How to rewrite equation of hyperbola in standard formRewrite a west to east parabola in standard formStandard...
Creepy dinosaur pc game identification
Picking the different solutions to the time independent Schrodinger eqaution
How can "mimic phobia" be cured or prevented?
What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?
Did arcade monitors have same pixel aspect ratio as TV sets?
Non-trope happy ending?
Does the UK parliament need to pass secondary legislation to accept the Article 50 extension
Extract more than nine arguments that occur periodically in a sentence to use in macros in order to typset
Why should universal income be universal?
Redundant comparison & "if" before assignment
What exact color does ozone gas have?
Keeping a ball lost forever
Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?
Yosemite Fire Rings - What to Expect?
Using substitution ciphers to generate new alphabets in a novel
Does Doodling or Improvising on the Piano Have Any Benefits?
Do the primes contain an infinite almost arithmetic progression?
What does "Scientists rise up against statistical significance" mean? (Comment in Nature)
How do apertures which seem too large to physically fit work?
Has any country ever had 2 former presidents in jail simultaneously?
Is there a RAID 0 Equivalent for RAM?
Why does AES have exactly 10 rounds for a 128-bit key, 12 for 192 bits and 14 for a 256-bit key size?
How to rewrite equation of hyperbola in standard form
Lowest total scrabble score
How to rewrite equation of hyperbola in standard form
Rewrite a west to east parabola in standard formStandard form of hyperbolaConic Section IntuitionWhat steps are involved to derive a functional expression for the revolving line of a cooling tower?Conic section General form to Standard form HyperbolaHyperbola Standard Form Denominator RelationshipHyperbola with Perpendicular AsymptotesRewrite hyperbola $Ax^2+Bxy+Dx+Ey+F=0$ into standard formHow to prove that the limit of this sequence is $400/pi$Can you multiply an integral by f(x)/f(x) where deg(f(x))>0?
$begingroup$
I was wondering about this question:
$$ 9 x ^ 2 -4y^2-72x=0 $$
What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?
Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.
Thank you ahead of time!
calculus conic-sections
$endgroup$
add a comment |
$begingroup$
I was wondering about this question:
$$ 9 x ^ 2 -4y^2-72x=0 $$
What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?
Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.
Thank you ahead of time!
calculus conic-sections
$endgroup$
2
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 hours ago
add a comment |
$begingroup$
I was wondering about this question:
$$ 9 x ^ 2 -4y^2-72x=0 $$
What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?
Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.
Thank you ahead of time!
calculus conic-sections
$endgroup$
I was wondering about this question:
$$ 9 x ^ 2 -4y^2-72x=0 $$
What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?
Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.
Thank you ahead of time!
calculus conic-sections
calculus conic-sections
edited 2 hours ago
Key Flex
8,63761233
8,63761233
asked 2 hours ago
JamesJames
555
555
2
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 hours ago
add a comment |
2
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 hours ago
2
2
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Note that $dfrac{(x-h)^2}{a^2}-dfrac{(y-k)^2}{b^2}=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac{1}{4}(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac{(x-4)^2}{16}-dfrac{y^2}{36}=1$$
$$dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}=1mbox{ is the required Hyperbola}$$
$endgroup$
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 hours ago
$begingroup$
@James $dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}$ is in the standard form.
$endgroup$
– Key Flex
1 hour ago
add a comment |
$begingroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+color{red}{16-16})-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$${(x-4)^2over 16}-{y^2over 36}=1$$
$endgroup$
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 hours ago
add a comment |
$begingroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac{9}{144}(x-4)^2-frac{4}{144}y^2=1$$
$$iff frac{(x-4)^2}{16}-frac{y^2}{36}=1$$
$$iff frac{(x-4)^2}{4^2}-frac{y^2}{6^2}=1$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158757%2fhow-to-rewrite-equation-of-hyperbola-in-standard-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $dfrac{(x-h)^2}{a^2}-dfrac{(y-k)^2}{b^2}=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac{1}{4}(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac{(x-4)^2}{16}-dfrac{y^2}{36}=1$$
$$dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}=1mbox{ is the required Hyperbola}$$
$endgroup$
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 hours ago
$begingroup$
@James $dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}$ is in the standard form.
$endgroup$
– Key Flex
1 hour ago
add a comment |
$begingroup$
Note that $dfrac{(x-h)^2}{a^2}-dfrac{(y-k)^2}{b^2}=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac{1}{4}(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac{(x-4)^2}{16}-dfrac{y^2}{36}=1$$
$$dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}=1mbox{ is the required Hyperbola}$$
$endgroup$
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 hours ago
$begingroup$
@James $dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}$ is in the standard form.
$endgroup$
– Key Flex
1 hour ago
add a comment |
$begingroup$
Note that $dfrac{(x-h)^2}{a^2}-dfrac{(y-k)^2}{b^2}=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac{1}{4}(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac{(x-4)^2}{16}-dfrac{y^2}{36}=1$$
$$dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}=1mbox{ is the required Hyperbola}$$
$endgroup$
Note that $dfrac{(x-h)^2}{a^2}-dfrac{(y-k)^2}{b^2}=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac{1}{4}(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac{(x-4)^2}{16}-dfrac{y^2}{36}=1$$
$$dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}=1mbox{ is the required Hyperbola}$$
answered 2 hours ago
Key FlexKey Flex
8,63761233
8,63761233
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 hours ago
$begingroup$
@James $dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}$ is in the standard form.
$endgroup$
– Key Flex
1 hour ago
add a comment |
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 hours ago
$begingroup$
@James $dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}$ is in the standard form.
$endgroup$
– Key Flex
1 hour ago
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 hours ago
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 hours ago
$begingroup$
@James $dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}$ is in the standard form.
$endgroup$
– Key Flex
1 hour ago
$begingroup$
@James $dfrac{(x-4)^2}{4^2}-dfrac{(y-0)^2}{6^2}$ is in the standard form.
$endgroup$
– Key Flex
1 hour ago
add a comment |
$begingroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+color{red}{16-16})-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$${(x-4)^2over 16}-{y^2over 36}=1$$
$endgroup$
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 hours ago
add a comment |
$begingroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+color{red}{16-16})-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$${(x-4)^2over 16}-{y^2over 36}=1$$
$endgroup$
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 hours ago
add a comment |
$begingroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+color{red}{16-16})-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$${(x-4)^2over 16}-{y^2over 36}=1$$
$endgroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+color{red}{16-16})-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$${(x-4)^2over 16}-{y^2over 36}=1$$
answered 2 hours ago
Maria MazurMaria Mazur
48k1260120
48k1260120
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 hours ago
add a comment |
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 hours ago
1
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 hours ago
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 hours ago
add a comment |
$begingroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac{9}{144}(x-4)^2-frac{4}{144}y^2=1$$
$$iff frac{(x-4)^2}{16}-frac{y^2}{36}=1$$
$$iff frac{(x-4)^2}{4^2}-frac{y^2}{6^2}=1$$
$endgroup$
add a comment |
$begingroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac{9}{144}(x-4)^2-frac{4}{144}y^2=1$$
$$iff frac{(x-4)^2}{16}-frac{y^2}{36}=1$$
$$iff frac{(x-4)^2}{4^2}-frac{y^2}{6^2}=1$$
$endgroup$
add a comment |
$begingroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac{9}{144}(x-4)^2-frac{4}{144}y^2=1$$
$$iff frac{(x-4)^2}{16}-frac{y^2}{36}=1$$
$$iff frac{(x-4)^2}{4^2}-frac{y^2}{6^2}=1$$
$endgroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac{9}{144}(x-4)^2-frac{4}{144}y^2=1$$
$$iff frac{(x-4)^2}{16}-frac{y^2}{36}=1$$
$$iff frac{(x-4)^2}{4^2}-frac{y^2}{6^2}=1$$
answered 2 hours ago
HAMIDINE SOUMAREHAMIDINE SOUMARE
1,20929
1,20929
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158757%2fhow-to-rewrite-equation-of-hyperbola-in-standard-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 hours ago