Solving a recurrence relation (poker chips)What is the recurrence relation in this problem?How many ways can...

Unlock My Phone! February 2018

What is the idiomatic way to say "clothing fits"?

One verb to replace 'be a member of' a club

Why is consensus so controversial in Britain?

Should I cover my bicycle overnight while bikepacking?

Why can't we play rap on piano?

What about the virus in 12 Monkeys?

How to show a landlord what we have in savings?

Intersection Puzzle

Assassin's bullet with mercury

Would Slavery Reparations be considered Bills of Attainder and hence Illegal?

Valid term from quadratic sequence?

What method can I use to design a dungeon difficult enough that the PCs can't make it through without killing them?

How would I stat a creature to be immune to everything but the Magic Missile spell? (just for fun)

Venezuelan girlfriend wants to travel the USA to be with me. What is the process?

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

How do I gain back my faith in my PhD degree?

Is "remove commented out code" correct English?

Short story with a alien planet, government officials must wear exploding medallions

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

What killed these X2 caps?

Is it acceptable for a professor to tell male students to not think that they are smarter than female students?

Why was the shrinking from 8″ made only to 5.25″ and not smaller (4″ or less)?

What exploit Are these user agents trying to use?



Solving a recurrence relation (poker chips)


What is the recurrence relation in this problem?How many ways can we divide line segment of length n into length 2 and 3 segmentsRecurrence relation word problemSolving a recurrence relation directlyRecurrence Relation for Stacking ChipsCombinations of a Bracelet?Number of ways to stack poker chips if two stacks that can be obtained from each other by reflection are considered to be equivalent?Problem with poker chipsrecurrence relation for the number of ways to make a pile of $n$ poker chips using red, white, and blue chipsnumber of ways to make a pile of $n$ poker chips using red, white, and blue chips and such that no two red chips are together













2












$begingroup$


Suppose that you have a large supply of red, white, green, and blue poker chips. You want to
make a vertical stack of n chips in such a way that the stack does not contain any consecutive
blue chips.



I've already found the recurrence relation for $a_{n}$ (where an denotes the number of ways you can make
such a stack of n poker chips):
$a_{n}=3a_{n-1}-3a_{n-2}$



But I am unsure of how to go about solving it. After solving it, I'm supposed to consider the specific case where you want to count only the stacks that use exactly 10 chips, and count $a_{10}$ directly.



Any help in the right direction is greatly appreciated!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    For the recurrence relation you have not given the initial values of $a_0$ and $a_1$
    $endgroup$
    – Martin Hansen
    2 hours ago








  • 1




    $begingroup$
    I don't think the recurrence relation is correct. Happy to be told it is; has anyone else checked it ?
    $endgroup$
    – Martin Hansen
    1 hour ago






  • 1




    $begingroup$
    @MartinHansen A quick check shows that the sequence starts with $1$, $4$, $15$, $57$, which indeed does not satisfy the recurrence.
    $endgroup$
    – Servaes
    1 hour ago










  • $begingroup$
    @Servaes Thanks for the confirmation : I've now added an answer based on the correct recurrence relation
    $endgroup$
    – Martin Hansen
    8 mins ago
















2












$begingroup$


Suppose that you have a large supply of red, white, green, and blue poker chips. You want to
make a vertical stack of n chips in such a way that the stack does not contain any consecutive
blue chips.



I've already found the recurrence relation for $a_{n}$ (where an denotes the number of ways you can make
such a stack of n poker chips):
$a_{n}=3a_{n-1}-3a_{n-2}$



But I am unsure of how to go about solving it. After solving it, I'm supposed to consider the specific case where you want to count only the stacks that use exactly 10 chips, and count $a_{10}$ directly.



Any help in the right direction is greatly appreciated!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    For the recurrence relation you have not given the initial values of $a_0$ and $a_1$
    $endgroup$
    – Martin Hansen
    2 hours ago








  • 1




    $begingroup$
    I don't think the recurrence relation is correct. Happy to be told it is; has anyone else checked it ?
    $endgroup$
    – Martin Hansen
    1 hour ago






  • 1




    $begingroup$
    @MartinHansen A quick check shows that the sequence starts with $1$, $4$, $15$, $57$, which indeed does not satisfy the recurrence.
    $endgroup$
    – Servaes
    1 hour ago










  • $begingroup$
    @Servaes Thanks for the confirmation : I've now added an answer based on the correct recurrence relation
    $endgroup$
    – Martin Hansen
    8 mins ago














2












2








2





$begingroup$


Suppose that you have a large supply of red, white, green, and blue poker chips. You want to
make a vertical stack of n chips in such a way that the stack does not contain any consecutive
blue chips.



I've already found the recurrence relation for $a_{n}$ (where an denotes the number of ways you can make
such a stack of n poker chips):
$a_{n}=3a_{n-1}-3a_{n-2}$



But I am unsure of how to go about solving it. After solving it, I'm supposed to consider the specific case where you want to count only the stacks that use exactly 10 chips, and count $a_{10}$ directly.



Any help in the right direction is greatly appreciated!










share|cite|improve this question









$endgroup$




Suppose that you have a large supply of red, white, green, and blue poker chips. You want to
make a vertical stack of n chips in such a way that the stack does not contain any consecutive
blue chips.



I've already found the recurrence relation for $a_{n}$ (where an denotes the number of ways you can make
such a stack of n poker chips):
$a_{n}=3a_{n-1}-3a_{n-2}$



But I am unsure of how to go about solving it. After solving it, I'm supposed to consider the specific case where you want to count only the stacks that use exactly 10 chips, and count $a_{10}$ directly.



Any help in the right direction is greatly appreciated!







combinatorics recurrence-relations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









Esther RoseEsther Rose

655




655








  • 1




    $begingroup$
    For the recurrence relation you have not given the initial values of $a_0$ and $a_1$
    $endgroup$
    – Martin Hansen
    2 hours ago








  • 1




    $begingroup$
    I don't think the recurrence relation is correct. Happy to be told it is; has anyone else checked it ?
    $endgroup$
    – Martin Hansen
    1 hour ago






  • 1




    $begingroup$
    @MartinHansen A quick check shows that the sequence starts with $1$, $4$, $15$, $57$, which indeed does not satisfy the recurrence.
    $endgroup$
    – Servaes
    1 hour ago










  • $begingroup$
    @Servaes Thanks for the confirmation : I've now added an answer based on the correct recurrence relation
    $endgroup$
    – Martin Hansen
    8 mins ago














  • 1




    $begingroup$
    For the recurrence relation you have not given the initial values of $a_0$ and $a_1$
    $endgroup$
    – Martin Hansen
    2 hours ago








  • 1




    $begingroup$
    I don't think the recurrence relation is correct. Happy to be told it is; has anyone else checked it ?
    $endgroup$
    – Martin Hansen
    1 hour ago






  • 1




    $begingroup$
    @MartinHansen A quick check shows that the sequence starts with $1$, $4$, $15$, $57$, which indeed does not satisfy the recurrence.
    $endgroup$
    – Servaes
    1 hour ago










  • $begingroup$
    @Servaes Thanks for the confirmation : I've now added an answer based on the correct recurrence relation
    $endgroup$
    – Martin Hansen
    8 mins ago








1




1




$begingroup$
For the recurrence relation you have not given the initial values of $a_0$ and $a_1$
$endgroup$
– Martin Hansen
2 hours ago






$begingroup$
For the recurrence relation you have not given the initial values of $a_0$ and $a_1$
$endgroup$
– Martin Hansen
2 hours ago






1




1




$begingroup$
I don't think the recurrence relation is correct. Happy to be told it is; has anyone else checked it ?
$endgroup$
– Martin Hansen
1 hour ago




$begingroup$
I don't think the recurrence relation is correct. Happy to be told it is; has anyone else checked it ?
$endgroup$
– Martin Hansen
1 hour ago




1




1




$begingroup$
@MartinHansen A quick check shows that the sequence starts with $1$, $4$, $15$, $57$, which indeed does not satisfy the recurrence.
$endgroup$
– Servaes
1 hour ago




$begingroup$
@MartinHansen A quick check shows that the sequence starts with $1$, $4$, $15$, $57$, which indeed does not satisfy the recurrence.
$endgroup$
– Servaes
1 hour ago












$begingroup$
@Servaes Thanks for the confirmation : I've now added an answer based on the correct recurrence relation
$endgroup$
– Martin Hansen
8 mins ago




$begingroup$
@Servaes Thanks for the confirmation : I've now added an answer based on the correct recurrence relation
$endgroup$
– Martin Hansen
8 mins ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

For situations involving linear, homogenous recurrence relations, the characteristic polynomial method works best.





Let us have the recurrence relation, for constants $c_i$ and $k>0$,



$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_{n} a_{n-k}$$



Much like with ordinary differential equations, we develop a characteristic polynomial for $a_n$. Let $a_n = alpha^n$. Then we get



$$alpha^n = c_1 alpha^{n-1} + c_2 alpha^{n-2} + ... + c_{k} alpha^{n-k}$$



Divide through by $alpha^{n-k}$ next:



$$alpha^{k} = c_1 alpha^{k-1} + c_2 alpha^{k-2} + ... + c_{k}$$



Bring everything to the same side:



$$alpha^{k} - c_1 alpha^{k-1} - c_2 alpha^{k-2} - ... - c_{k} = 0$$



This is a polynomial, and we seek the roots to it. Let them be $alpha_1,...,alpha_k$. (If $alpha_i$ is a duplicate root, replace the first duplicate with $nalpha_i$, the second with $n^2 alpha_k$, and so on.)



Then, for these roots, up to constants $A_1,...,A_k$ depending on your initial conditions, we have



$$a_n = A_1 alpha_1^n + ... + A_k alpha_k^n$$





Footnotes & Caveats:



As you might imagine, it is hypothetically possible for the recurrence to have complex roots. I do not know how to handle those situations since, as I noted in a few past answers, I'm taking a combinatorics class this semester and this stuff is relatively new to me, so I'm guessing they're keeping us to the "basic" stuff. They might do the same for you, I don't know. It probably depends on the class/text whether the examples are "nice enough" in that respect.



Also, a nice tidbit: it's a good paranoia check to double-check your solution. Once you have the explicit form for $a_n$, check that your initial solutions are valid, and perhaps a few other values you obtain from the recurrence relation. In examples like this where you have to derive the recurrence relation yourself instead of simply being given it, you should be able to get some values by brute force for $n=1,2,3,$ and so on, for ever-how-many initial conditions you need to use. (You need as many initial conditions as there are previous values that determine $a_n$.)



Also bear in mind that this method only works for linear, homogenous recurrence relations. For nonhomogenous ones, I've spoken to you on solving them. For nonlinear ones, we need something more elaborate (such as generating functions) but such discussion is well beyond the scope of this post.





A simple example to motivate this method:




Example: Let us find the solution to the Fibonacci recurrence
$$a_n = a_{n-1} + a_{n-2}$$
where $a_0 = 0,$ and $a_1 = 1$.




(Bear in mind that while here each $a_{text{something}}$ has coefficient $1$, they need not be, and as in the previous explanation the coefficients "carry over" to the characteristic polynomial. The Fibonacci relation is simply a common first example.)



Here, the characteristic polynomial is given by



$$alpha^n = alpha^{n-1} + alpha^{n-2}$$



Divide through by $alpha^{n-2}$:



$$alpha^2 = alpha + 1 implies alpha^2 - alpha - 1 = 0$$



This quadratic can be solved by the quadratic formula. It's a well known result that the two roots to this are the golden ratio $varphi$ and its conjugate $overline varphi$:



$$varphi = frac{1 + sqrt 5}{2} ;;;;; overline varphi = frac{1 - sqrt 5}{2}$$



Thus, up to constants $A_1,A_2$, we can claim



$$a_n = A_1 varphi ^n + A_2 overline{varphi}^n = A_1 left( frac{1 + sqrt 5}{2} right)^n + A_2 left( frac{1 - sqrt 5}{2} right)^n$$



What remains is to determine the constants $A_1, A_2$. To do this, substitute your initial conditions. Thus, you get a system of equations as below. In $a_0$, you let $n=0$ in your solution for $a_n$ above; similarly, $n=1$ in the $a_1$ case.



$$left{begin{matrix}
a_0 = 0\
a_1 = 1
end{matrix}right. implies left{begin{matrix}
A_1 + A_2 = 0\
A_1 varphi + A_2 overline{varphi} = 1
end{matrix}right.$$



To solve this is a fairly typical exercise in solving systems of equations, or linear algebra if you're faced with the awful situation of many initial conditions. I'll skip the boring bits, leaving the algebra to you, simply saying you should get $A_1 = 1/sqrt 5, A_2 = -1/sqrt5$.



And thus we get a general formula for the Fibonacci relation!



$$a_n = frac{ varphi ^n}{sqrt 5} - frac{overline{varphi}^n}{sqrt 5} = frac{ 1}{sqrt 5}left(frac{1 + sqrt 5}{2}right)^n - frac{1}{sqrt 5}left( frac{1 + sqrt 5}{2} right)^n$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    By induction, your recurrence relation can be written as
    $$begin{pmatrix}
    a_n\
    a_{n-1}
    end{pmatrix}
    =
    begin{pmatrix}
    3&-3\
    0&1
    end{pmatrix}
    begin{pmatrix}
    a_{n-1}\
    a_{n-2}
    end{pmatrix}
    =
    begin{pmatrix}
    3&-3\
    0&1
    end{pmatrix}^{n-1}
    begin{pmatrix}
    a_1\
    a_0
    end{pmatrix}
    .$$

    The Jordan decomposition of this matrix allows for simple closed forms for the coefficients of the powers of this matrix.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Whenever you have a recurrence relation of the form $u_{n+2}=alpha u_{n+1}+beta u_n$, you want to find a basis of the set of solutions. One good idea is to look for geometric sequences. If $r$ is the rate, then $r$ verifies
      $$r^2=alpha r+beta$$
      If $r_1$ and $r_2$ are the (complex) solutions, then every sequence is of the form
      $$u_n=Ar_1^n+Br_2^n$$
      and you find $A$ and $B$ by looking at the initial values.






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        Thanks for an interesting question.



        The recurrence relation given in the question is not correct, albeit with only a sign error.



        It should be;
        $$a_n=3a_{n-1}+3a_{n-2}$$
        $$a_0=1 : a_1=4$$
        This gives rise to the generating series,
        $$1+4x+15x^2+57x^3+216x^4+819x^5+dots+169209x^9+641520x^{10}+2432187x^{11}+dots$$
        So, assuming the initial term is $a_0$, $a_{10}=641520$, which you asked for.



        This generating series has generating function,
        $$frac{1+x}{1-3x-3x^2}$$
        Applying partial fractions to this gives, after some algebra,
        $$frac{1+x}{1-3x-3x^2}=frac{21-5 sqrt{21}}{42 big( 1-frac{3-sqrt{21}}{2}x big)}+frac{21+5 sqrt{21}}{42 big( 1-frac{3+sqrt{21}}{2}x big)}$$
        which are recognisable as standard bits directly translating into a formula for the $n^{th}$ term,
        $$T_n=left( frac{1}{2}-frac{5 sqrt {21}}{42} right)left( frac{3 - sqrt {21}}{2} right)^n + left( frac{1}{2}+frac{5 sqrt {21}}{42} right)left( frac{3 + sqrt {21}}{2} right)^n$$



        Happy to elaborate on any of the detail if necessary.






        share|cite|improve this answer









        $endgroup$














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3173931%2fsolving-a-recurrence-relation-poker-chips%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          For situations involving linear, homogenous recurrence relations, the characteristic polynomial method works best.





          Let us have the recurrence relation, for constants $c_i$ and $k>0$,



          $$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_{n} a_{n-k}$$



          Much like with ordinary differential equations, we develop a characteristic polynomial for $a_n$. Let $a_n = alpha^n$. Then we get



          $$alpha^n = c_1 alpha^{n-1} + c_2 alpha^{n-2} + ... + c_{k} alpha^{n-k}$$



          Divide through by $alpha^{n-k}$ next:



          $$alpha^{k} = c_1 alpha^{k-1} + c_2 alpha^{k-2} + ... + c_{k}$$



          Bring everything to the same side:



          $$alpha^{k} - c_1 alpha^{k-1} - c_2 alpha^{k-2} - ... - c_{k} = 0$$



          This is a polynomial, and we seek the roots to it. Let them be $alpha_1,...,alpha_k$. (If $alpha_i$ is a duplicate root, replace the first duplicate with $nalpha_i$, the second with $n^2 alpha_k$, and so on.)



          Then, for these roots, up to constants $A_1,...,A_k$ depending on your initial conditions, we have



          $$a_n = A_1 alpha_1^n + ... + A_k alpha_k^n$$





          Footnotes & Caveats:



          As you might imagine, it is hypothetically possible for the recurrence to have complex roots. I do not know how to handle those situations since, as I noted in a few past answers, I'm taking a combinatorics class this semester and this stuff is relatively new to me, so I'm guessing they're keeping us to the "basic" stuff. They might do the same for you, I don't know. It probably depends on the class/text whether the examples are "nice enough" in that respect.



          Also, a nice tidbit: it's a good paranoia check to double-check your solution. Once you have the explicit form for $a_n$, check that your initial solutions are valid, and perhaps a few other values you obtain from the recurrence relation. In examples like this where you have to derive the recurrence relation yourself instead of simply being given it, you should be able to get some values by brute force for $n=1,2,3,$ and so on, for ever-how-many initial conditions you need to use. (You need as many initial conditions as there are previous values that determine $a_n$.)



          Also bear in mind that this method only works for linear, homogenous recurrence relations. For nonhomogenous ones, I've spoken to you on solving them. For nonlinear ones, we need something more elaborate (such as generating functions) but such discussion is well beyond the scope of this post.





          A simple example to motivate this method:




          Example: Let us find the solution to the Fibonacci recurrence
          $$a_n = a_{n-1} + a_{n-2}$$
          where $a_0 = 0,$ and $a_1 = 1$.




          (Bear in mind that while here each $a_{text{something}}$ has coefficient $1$, they need not be, and as in the previous explanation the coefficients "carry over" to the characteristic polynomial. The Fibonacci relation is simply a common first example.)



          Here, the characteristic polynomial is given by



          $$alpha^n = alpha^{n-1} + alpha^{n-2}$$



          Divide through by $alpha^{n-2}$:



          $$alpha^2 = alpha + 1 implies alpha^2 - alpha - 1 = 0$$



          This quadratic can be solved by the quadratic formula. It's a well known result that the two roots to this are the golden ratio $varphi$ and its conjugate $overline varphi$:



          $$varphi = frac{1 + sqrt 5}{2} ;;;;; overline varphi = frac{1 - sqrt 5}{2}$$



          Thus, up to constants $A_1,A_2$, we can claim



          $$a_n = A_1 varphi ^n + A_2 overline{varphi}^n = A_1 left( frac{1 + sqrt 5}{2} right)^n + A_2 left( frac{1 - sqrt 5}{2} right)^n$$



          What remains is to determine the constants $A_1, A_2$. To do this, substitute your initial conditions. Thus, you get a system of equations as below. In $a_0$, you let $n=0$ in your solution for $a_n$ above; similarly, $n=1$ in the $a_1$ case.



          $$left{begin{matrix}
          a_0 = 0\
          a_1 = 1
          end{matrix}right. implies left{begin{matrix}
          A_1 + A_2 = 0\
          A_1 varphi + A_2 overline{varphi} = 1
          end{matrix}right.$$



          To solve this is a fairly typical exercise in solving systems of equations, or linear algebra if you're faced with the awful situation of many initial conditions. I'll skip the boring bits, leaving the algebra to you, simply saying you should get $A_1 = 1/sqrt 5, A_2 = -1/sqrt5$.



          And thus we get a general formula for the Fibonacci relation!



          $$a_n = frac{ varphi ^n}{sqrt 5} - frac{overline{varphi}^n}{sqrt 5} = frac{ 1}{sqrt 5}left(frac{1 + sqrt 5}{2}right)^n - frac{1}{sqrt 5}left( frac{1 + sqrt 5}{2} right)^n$$






          share|cite|improve this answer









          $endgroup$


















            2












            $begingroup$

            For situations involving linear, homogenous recurrence relations, the characteristic polynomial method works best.





            Let us have the recurrence relation, for constants $c_i$ and $k>0$,



            $$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_{n} a_{n-k}$$



            Much like with ordinary differential equations, we develop a characteristic polynomial for $a_n$. Let $a_n = alpha^n$. Then we get



            $$alpha^n = c_1 alpha^{n-1} + c_2 alpha^{n-2} + ... + c_{k} alpha^{n-k}$$



            Divide through by $alpha^{n-k}$ next:



            $$alpha^{k} = c_1 alpha^{k-1} + c_2 alpha^{k-2} + ... + c_{k}$$



            Bring everything to the same side:



            $$alpha^{k} - c_1 alpha^{k-1} - c_2 alpha^{k-2} - ... - c_{k} = 0$$



            This is a polynomial, and we seek the roots to it. Let them be $alpha_1,...,alpha_k$. (If $alpha_i$ is a duplicate root, replace the first duplicate with $nalpha_i$, the second with $n^2 alpha_k$, and so on.)



            Then, for these roots, up to constants $A_1,...,A_k$ depending on your initial conditions, we have



            $$a_n = A_1 alpha_1^n + ... + A_k alpha_k^n$$





            Footnotes & Caveats:



            As you might imagine, it is hypothetically possible for the recurrence to have complex roots. I do not know how to handle those situations since, as I noted in a few past answers, I'm taking a combinatorics class this semester and this stuff is relatively new to me, so I'm guessing they're keeping us to the "basic" stuff. They might do the same for you, I don't know. It probably depends on the class/text whether the examples are "nice enough" in that respect.



            Also, a nice tidbit: it's a good paranoia check to double-check your solution. Once you have the explicit form for $a_n$, check that your initial solutions are valid, and perhaps a few other values you obtain from the recurrence relation. In examples like this where you have to derive the recurrence relation yourself instead of simply being given it, you should be able to get some values by brute force for $n=1,2,3,$ and so on, for ever-how-many initial conditions you need to use. (You need as many initial conditions as there are previous values that determine $a_n$.)



            Also bear in mind that this method only works for linear, homogenous recurrence relations. For nonhomogenous ones, I've spoken to you on solving them. For nonlinear ones, we need something more elaborate (such as generating functions) but such discussion is well beyond the scope of this post.





            A simple example to motivate this method:




            Example: Let us find the solution to the Fibonacci recurrence
            $$a_n = a_{n-1} + a_{n-2}$$
            where $a_0 = 0,$ and $a_1 = 1$.




            (Bear in mind that while here each $a_{text{something}}$ has coefficient $1$, they need not be, and as in the previous explanation the coefficients "carry over" to the characteristic polynomial. The Fibonacci relation is simply a common first example.)



            Here, the characteristic polynomial is given by



            $$alpha^n = alpha^{n-1} + alpha^{n-2}$$



            Divide through by $alpha^{n-2}$:



            $$alpha^2 = alpha + 1 implies alpha^2 - alpha - 1 = 0$$



            This quadratic can be solved by the quadratic formula. It's a well known result that the two roots to this are the golden ratio $varphi$ and its conjugate $overline varphi$:



            $$varphi = frac{1 + sqrt 5}{2} ;;;;; overline varphi = frac{1 - sqrt 5}{2}$$



            Thus, up to constants $A_1,A_2$, we can claim



            $$a_n = A_1 varphi ^n + A_2 overline{varphi}^n = A_1 left( frac{1 + sqrt 5}{2} right)^n + A_2 left( frac{1 - sqrt 5}{2} right)^n$$



            What remains is to determine the constants $A_1, A_2$. To do this, substitute your initial conditions. Thus, you get a system of equations as below. In $a_0$, you let $n=0$ in your solution for $a_n$ above; similarly, $n=1$ in the $a_1$ case.



            $$left{begin{matrix}
            a_0 = 0\
            a_1 = 1
            end{matrix}right. implies left{begin{matrix}
            A_1 + A_2 = 0\
            A_1 varphi + A_2 overline{varphi} = 1
            end{matrix}right.$$



            To solve this is a fairly typical exercise in solving systems of equations, or linear algebra if you're faced with the awful situation of many initial conditions. I'll skip the boring bits, leaving the algebra to you, simply saying you should get $A_1 = 1/sqrt 5, A_2 = -1/sqrt5$.



            And thus we get a general formula for the Fibonacci relation!



            $$a_n = frac{ varphi ^n}{sqrt 5} - frac{overline{varphi}^n}{sqrt 5} = frac{ 1}{sqrt 5}left(frac{1 + sqrt 5}{2}right)^n - frac{1}{sqrt 5}left( frac{1 + sqrt 5}{2} right)^n$$






            share|cite|improve this answer









            $endgroup$
















              2












              2








              2





              $begingroup$

              For situations involving linear, homogenous recurrence relations, the characteristic polynomial method works best.





              Let us have the recurrence relation, for constants $c_i$ and $k>0$,



              $$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_{n} a_{n-k}$$



              Much like with ordinary differential equations, we develop a characteristic polynomial for $a_n$. Let $a_n = alpha^n$. Then we get



              $$alpha^n = c_1 alpha^{n-1} + c_2 alpha^{n-2} + ... + c_{k} alpha^{n-k}$$



              Divide through by $alpha^{n-k}$ next:



              $$alpha^{k} = c_1 alpha^{k-1} + c_2 alpha^{k-2} + ... + c_{k}$$



              Bring everything to the same side:



              $$alpha^{k} - c_1 alpha^{k-1} - c_2 alpha^{k-2} - ... - c_{k} = 0$$



              This is a polynomial, and we seek the roots to it. Let them be $alpha_1,...,alpha_k$. (If $alpha_i$ is a duplicate root, replace the first duplicate with $nalpha_i$, the second with $n^2 alpha_k$, and so on.)



              Then, for these roots, up to constants $A_1,...,A_k$ depending on your initial conditions, we have



              $$a_n = A_1 alpha_1^n + ... + A_k alpha_k^n$$





              Footnotes & Caveats:



              As you might imagine, it is hypothetically possible for the recurrence to have complex roots. I do not know how to handle those situations since, as I noted in a few past answers, I'm taking a combinatorics class this semester and this stuff is relatively new to me, so I'm guessing they're keeping us to the "basic" stuff. They might do the same for you, I don't know. It probably depends on the class/text whether the examples are "nice enough" in that respect.



              Also, a nice tidbit: it's a good paranoia check to double-check your solution. Once you have the explicit form for $a_n$, check that your initial solutions are valid, and perhaps a few other values you obtain from the recurrence relation. In examples like this where you have to derive the recurrence relation yourself instead of simply being given it, you should be able to get some values by brute force for $n=1,2,3,$ and so on, for ever-how-many initial conditions you need to use. (You need as many initial conditions as there are previous values that determine $a_n$.)



              Also bear in mind that this method only works for linear, homogenous recurrence relations. For nonhomogenous ones, I've spoken to you on solving them. For nonlinear ones, we need something more elaborate (such as generating functions) but such discussion is well beyond the scope of this post.





              A simple example to motivate this method:




              Example: Let us find the solution to the Fibonacci recurrence
              $$a_n = a_{n-1} + a_{n-2}$$
              where $a_0 = 0,$ and $a_1 = 1$.




              (Bear in mind that while here each $a_{text{something}}$ has coefficient $1$, they need not be, and as in the previous explanation the coefficients "carry over" to the characteristic polynomial. The Fibonacci relation is simply a common first example.)



              Here, the characteristic polynomial is given by



              $$alpha^n = alpha^{n-1} + alpha^{n-2}$$



              Divide through by $alpha^{n-2}$:



              $$alpha^2 = alpha + 1 implies alpha^2 - alpha - 1 = 0$$



              This quadratic can be solved by the quadratic formula. It's a well known result that the two roots to this are the golden ratio $varphi$ and its conjugate $overline varphi$:



              $$varphi = frac{1 + sqrt 5}{2} ;;;;; overline varphi = frac{1 - sqrt 5}{2}$$



              Thus, up to constants $A_1,A_2$, we can claim



              $$a_n = A_1 varphi ^n + A_2 overline{varphi}^n = A_1 left( frac{1 + sqrt 5}{2} right)^n + A_2 left( frac{1 - sqrt 5}{2} right)^n$$



              What remains is to determine the constants $A_1, A_2$. To do this, substitute your initial conditions. Thus, you get a system of equations as below. In $a_0$, you let $n=0$ in your solution for $a_n$ above; similarly, $n=1$ in the $a_1$ case.



              $$left{begin{matrix}
              a_0 = 0\
              a_1 = 1
              end{matrix}right. implies left{begin{matrix}
              A_1 + A_2 = 0\
              A_1 varphi + A_2 overline{varphi} = 1
              end{matrix}right.$$



              To solve this is a fairly typical exercise in solving systems of equations, or linear algebra if you're faced with the awful situation of many initial conditions. I'll skip the boring bits, leaving the algebra to you, simply saying you should get $A_1 = 1/sqrt 5, A_2 = -1/sqrt5$.



              And thus we get a general formula for the Fibonacci relation!



              $$a_n = frac{ varphi ^n}{sqrt 5} - frac{overline{varphi}^n}{sqrt 5} = frac{ 1}{sqrt 5}left(frac{1 + sqrt 5}{2}right)^n - frac{1}{sqrt 5}left( frac{1 + sqrt 5}{2} right)^n$$






              share|cite|improve this answer









              $endgroup$



              For situations involving linear, homogenous recurrence relations, the characteristic polynomial method works best.





              Let us have the recurrence relation, for constants $c_i$ and $k>0$,



              $$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_{n} a_{n-k}$$



              Much like with ordinary differential equations, we develop a characteristic polynomial for $a_n$. Let $a_n = alpha^n$. Then we get



              $$alpha^n = c_1 alpha^{n-1} + c_2 alpha^{n-2} + ... + c_{k} alpha^{n-k}$$



              Divide through by $alpha^{n-k}$ next:



              $$alpha^{k} = c_1 alpha^{k-1} + c_2 alpha^{k-2} + ... + c_{k}$$



              Bring everything to the same side:



              $$alpha^{k} - c_1 alpha^{k-1} - c_2 alpha^{k-2} - ... - c_{k} = 0$$



              This is a polynomial, and we seek the roots to it. Let them be $alpha_1,...,alpha_k$. (If $alpha_i$ is a duplicate root, replace the first duplicate with $nalpha_i$, the second with $n^2 alpha_k$, and so on.)



              Then, for these roots, up to constants $A_1,...,A_k$ depending on your initial conditions, we have



              $$a_n = A_1 alpha_1^n + ... + A_k alpha_k^n$$





              Footnotes & Caveats:



              As you might imagine, it is hypothetically possible for the recurrence to have complex roots. I do not know how to handle those situations since, as I noted in a few past answers, I'm taking a combinatorics class this semester and this stuff is relatively new to me, so I'm guessing they're keeping us to the "basic" stuff. They might do the same for you, I don't know. It probably depends on the class/text whether the examples are "nice enough" in that respect.



              Also, a nice tidbit: it's a good paranoia check to double-check your solution. Once you have the explicit form for $a_n$, check that your initial solutions are valid, and perhaps a few other values you obtain from the recurrence relation. In examples like this where you have to derive the recurrence relation yourself instead of simply being given it, you should be able to get some values by brute force for $n=1,2,3,$ and so on, for ever-how-many initial conditions you need to use. (You need as many initial conditions as there are previous values that determine $a_n$.)



              Also bear in mind that this method only works for linear, homogenous recurrence relations. For nonhomogenous ones, I've spoken to you on solving them. For nonlinear ones, we need something more elaborate (such as generating functions) but such discussion is well beyond the scope of this post.





              A simple example to motivate this method:




              Example: Let us find the solution to the Fibonacci recurrence
              $$a_n = a_{n-1} + a_{n-2}$$
              where $a_0 = 0,$ and $a_1 = 1$.




              (Bear in mind that while here each $a_{text{something}}$ has coefficient $1$, they need not be, and as in the previous explanation the coefficients "carry over" to the characteristic polynomial. The Fibonacci relation is simply a common first example.)



              Here, the characteristic polynomial is given by



              $$alpha^n = alpha^{n-1} + alpha^{n-2}$$



              Divide through by $alpha^{n-2}$:



              $$alpha^2 = alpha + 1 implies alpha^2 - alpha - 1 = 0$$



              This quadratic can be solved by the quadratic formula. It's a well known result that the two roots to this are the golden ratio $varphi$ and its conjugate $overline varphi$:



              $$varphi = frac{1 + sqrt 5}{2} ;;;;; overline varphi = frac{1 - sqrt 5}{2}$$



              Thus, up to constants $A_1,A_2$, we can claim



              $$a_n = A_1 varphi ^n + A_2 overline{varphi}^n = A_1 left( frac{1 + sqrt 5}{2} right)^n + A_2 left( frac{1 - sqrt 5}{2} right)^n$$



              What remains is to determine the constants $A_1, A_2$. To do this, substitute your initial conditions. Thus, you get a system of equations as below. In $a_0$, you let $n=0$ in your solution for $a_n$ above; similarly, $n=1$ in the $a_1$ case.



              $$left{begin{matrix}
              a_0 = 0\
              a_1 = 1
              end{matrix}right. implies left{begin{matrix}
              A_1 + A_2 = 0\
              A_1 varphi + A_2 overline{varphi} = 1
              end{matrix}right.$$



              To solve this is a fairly typical exercise in solving systems of equations, or linear algebra if you're faced with the awful situation of many initial conditions. I'll skip the boring bits, leaving the algebra to you, simply saying you should get $A_1 = 1/sqrt 5, A_2 = -1/sqrt5$.



              And thus we get a general formula for the Fibonacci relation!



              $$a_n = frac{ varphi ^n}{sqrt 5} - frac{overline{varphi}^n}{sqrt 5} = frac{ 1}{sqrt 5}left(frac{1 + sqrt 5}{2}right)^n - frac{1}{sqrt 5}left( frac{1 + sqrt 5}{2} right)^n$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 2 hours ago









              Eevee TrainerEevee Trainer

              9,43431740




              9,43431740























                  1












                  $begingroup$

                  By induction, your recurrence relation can be written as
                  $$begin{pmatrix}
                  a_n\
                  a_{n-1}
                  end{pmatrix}
                  =
                  begin{pmatrix}
                  3&-3\
                  0&1
                  end{pmatrix}
                  begin{pmatrix}
                  a_{n-1}\
                  a_{n-2}
                  end{pmatrix}
                  =
                  begin{pmatrix}
                  3&-3\
                  0&1
                  end{pmatrix}^{n-1}
                  begin{pmatrix}
                  a_1\
                  a_0
                  end{pmatrix}
                  .$$

                  The Jordan decomposition of this matrix allows for simple closed forms for the coefficients of the powers of this matrix.






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    By induction, your recurrence relation can be written as
                    $$begin{pmatrix}
                    a_n\
                    a_{n-1}
                    end{pmatrix}
                    =
                    begin{pmatrix}
                    3&-3\
                    0&1
                    end{pmatrix}
                    begin{pmatrix}
                    a_{n-1}\
                    a_{n-2}
                    end{pmatrix}
                    =
                    begin{pmatrix}
                    3&-3\
                    0&1
                    end{pmatrix}^{n-1}
                    begin{pmatrix}
                    a_1\
                    a_0
                    end{pmatrix}
                    .$$

                    The Jordan decomposition of this matrix allows for simple closed forms for the coefficients of the powers of this matrix.






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      By induction, your recurrence relation can be written as
                      $$begin{pmatrix}
                      a_n\
                      a_{n-1}
                      end{pmatrix}
                      =
                      begin{pmatrix}
                      3&-3\
                      0&1
                      end{pmatrix}
                      begin{pmatrix}
                      a_{n-1}\
                      a_{n-2}
                      end{pmatrix}
                      =
                      begin{pmatrix}
                      3&-3\
                      0&1
                      end{pmatrix}^{n-1}
                      begin{pmatrix}
                      a_1\
                      a_0
                      end{pmatrix}
                      .$$

                      The Jordan decomposition of this matrix allows for simple closed forms for the coefficients of the powers of this matrix.






                      share|cite|improve this answer









                      $endgroup$



                      By induction, your recurrence relation can be written as
                      $$begin{pmatrix}
                      a_n\
                      a_{n-1}
                      end{pmatrix}
                      =
                      begin{pmatrix}
                      3&-3\
                      0&1
                      end{pmatrix}
                      begin{pmatrix}
                      a_{n-1}\
                      a_{n-2}
                      end{pmatrix}
                      =
                      begin{pmatrix}
                      3&-3\
                      0&1
                      end{pmatrix}^{n-1}
                      begin{pmatrix}
                      a_1\
                      a_0
                      end{pmatrix}
                      .$$

                      The Jordan decomposition of this matrix allows for simple closed forms for the coefficients of the powers of this matrix.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 2 hours ago









                      ServaesServaes

                      29.6k342101




                      29.6k342101























                          0












                          $begingroup$

                          Whenever you have a recurrence relation of the form $u_{n+2}=alpha u_{n+1}+beta u_n$, you want to find a basis of the set of solutions. One good idea is to look for geometric sequences. If $r$ is the rate, then $r$ verifies
                          $$r^2=alpha r+beta$$
                          If $r_1$ and $r_2$ are the (complex) solutions, then every sequence is of the form
                          $$u_n=Ar_1^n+Br_2^n$$
                          and you find $A$ and $B$ by looking at the initial values.






                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            Whenever you have a recurrence relation of the form $u_{n+2}=alpha u_{n+1}+beta u_n$, you want to find a basis of the set of solutions. One good idea is to look for geometric sequences. If $r$ is the rate, then $r$ verifies
                            $$r^2=alpha r+beta$$
                            If $r_1$ and $r_2$ are the (complex) solutions, then every sequence is of the form
                            $$u_n=Ar_1^n+Br_2^n$$
                            and you find $A$ and $B$ by looking at the initial values.






                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              Whenever you have a recurrence relation of the form $u_{n+2}=alpha u_{n+1}+beta u_n$, you want to find a basis of the set of solutions. One good idea is to look for geometric sequences. If $r$ is the rate, then $r$ verifies
                              $$r^2=alpha r+beta$$
                              If $r_1$ and $r_2$ are the (complex) solutions, then every sequence is of the form
                              $$u_n=Ar_1^n+Br_2^n$$
                              and you find $A$ and $B$ by looking at the initial values.






                              share|cite|improve this answer









                              $endgroup$



                              Whenever you have a recurrence relation of the form $u_{n+2}=alpha u_{n+1}+beta u_n$, you want to find a basis of the set of solutions. One good idea is to look for geometric sequences. If $r$ is the rate, then $r$ verifies
                              $$r^2=alpha r+beta$$
                              If $r_1$ and $r_2$ are the (complex) solutions, then every sequence is of the form
                              $$u_n=Ar_1^n+Br_2^n$$
                              and you find $A$ and $B$ by looking at the initial values.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 2 hours ago









                              Nicolas FRANCOISNicolas FRANCOIS

                              3,7771516




                              3,7771516























                                  0












                                  $begingroup$

                                  Thanks for an interesting question.



                                  The recurrence relation given in the question is not correct, albeit with only a sign error.



                                  It should be;
                                  $$a_n=3a_{n-1}+3a_{n-2}$$
                                  $$a_0=1 : a_1=4$$
                                  This gives rise to the generating series,
                                  $$1+4x+15x^2+57x^3+216x^4+819x^5+dots+169209x^9+641520x^{10}+2432187x^{11}+dots$$
                                  So, assuming the initial term is $a_0$, $a_{10}=641520$, which you asked for.



                                  This generating series has generating function,
                                  $$frac{1+x}{1-3x-3x^2}$$
                                  Applying partial fractions to this gives, after some algebra,
                                  $$frac{1+x}{1-3x-3x^2}=frac{21-5 sqrt{21}}{42 big( 1-frac{3-sqrt{21}}{2}x big)}+frac{21+5 sqrt{21}}{42 big( 1-frac{3+sqrt{21}}{2}x big)}$$
                                  which are recognisable as standard bits directly translating into a formula for the $n^{th}$ term,
                                  $$T_n=left( frac{1}{2}-frac{5 sqrt {21}}{42} right)left( frac{3 - sqrt {21}}{2} right)^n + left( frac{1}{2}+frac{5 sqrt {21}}{42} right)left( frac{3 + sqrt {21}}{2} right)^n$$



                                  Happy to elaborate on any of the detail if necessary.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    Thanks for an interesting question.



                                    The recurrence relation given in the question is not correct, albeit with only a sign error.



                                    It should be;
                                    $$a_n=3a_{n-1}+3a_{n-2}$$
                                    $$a_0=1 : a_1=4$$
                                    This gives rise to the generating series,
                                    $$1+4x+15x^2+57x^3+216x^4+819x^5+dots+169209x^9+641520x^{10}+2432187x^{11}+dots$$
                                    So, assuming the initial term is $a_0$, $a_{10}=641520$, which you asked for.



                                    This generating series has generating function,
                                    $$frac{1+x}{1-3x-3x^2}$$
                                    Applying partial fractions to this gives, after some algebra,
                                    $$frac{1+x}{1-3x-3x^2}=frac{21-5 sqrt{21}}{42 big( 1-frac{3-sqrt{21}}{2}x big)}+frac{21+5 sqrt{21}}{42 big( 1-frac{3+sqrt{21}}{2}x big)}$$
                                    which are recognisable as standard bits directly translating into a formula for the $n^{th}$ term,
                                    $$T_n=left( frac{1}{2}-frac{5 sqrt {21}}{42} right)left( frac{3 - sqrt {21}}{2} right)^n + left( frac{1}{2}+frac{5 sqrt {21}}{42} right)left( frac{3 + sqrt {21}}{2} right)^n$$



                                    Happy to elaborate on any of the detail if necessary.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Thanks for an interesting question.



                                      The recurrence relation given in the question is not correct, albeit with only a sign error.



                                      It should be;
                                      $$a_n=3a_{n-1}+3a_{n-2}$$
                                      $$a_0=1 : a_1=4$$
                                      This gives rise to the generating series,
                                      $$1+4x+15x^2+57x^3+216x^4+819x^5+dots+169209x^9+641520x^{10}+2432187x^{11}+dots$$
                                      So, assuming the initial term is $a_0$, $a_{10}=641520$, which you asked for.



                                      This generating series has generating function,
                                      $$frac{1+x}{1-3x-3x^2}$$
                                      Applying partial fractions to this gives, after some algebra,
                                      $$frac{1+x}{1-3x-3x^2}=frac{21-5 sqrt{21}}{42 big( 1-frac{3-sqrt{21}}{2}x big)}+frac{21+5 sqrt{21}}{42 big( 1-frac{3+sqrt{21}}{2}x big)}$$
                                      which are recognisable as standard bits directly translating into a formula for the $n^{th}$ term,
                                      $$T_n=left( frac{1}{2}-frac{5 sqrt {21}}{42} right)left( frac{3 - sqrt {21}}{2} right)^n + left( frac{1}{2}+frac{5 sqrt {21}}{42} right)left( frac{3 + sqrt {21}}{2} right)^n$$



                                      Happy to elaborate on any of the detail if necessary.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Thanks for an interesting question.



                                      The recurrence relation given in the question is not correct, albeit with only a sign error.



                                      It should be;
                                      $$a_n=3a_{n-1}+3a_{n-2}$$
                                      $$a_0=1 : a_1=4$$
                                      This gives rise to the generating series,
                                      $$1+4x+15x^2+57x^3+216x^4+819x^5+dots+169209x^9+641520x^{10}+2432187x^{11}+dots$$
                                      So, assuming the initial term is $a_0$, $a_{10}=641520$, which you asked for.



                                      This generating series has generating function,
                                      $$frac{1+x}{1-3x-3x^2}$$
                                      Applying partial fractions to this gives, after some algebra,
                                      $$frac{1+x}{1-3x-3x^2}=frac{21-5 sqrt{21}}{42 big( 1-frac{3-sqrt{21}}{2}x big)}+frac{21+5 sqrt{21}}{42 big( 1-frac{3+sqrt{21}}{2}x big)}$$
                                      which are recognisable as standard bits directly translating into a formula for the $n^{th}$ term,
                                      $$T_n=left( frac{1}{2}-frac{5 sqrt {21}}{42} right)left( frac{3 - sqrt {21}}{2} right)^n + left( frac{1}{2}+frac{5 sqrt {21}}{42} right)left( frac{3 + sqrt {21}}{2} right)^n$$



                                      Happy to elaborate on any of the detail if necessary.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 10 mins ago









                                      Martin HansenMartin Hansen

                                      743114




                                      743114






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3173931%2fsolving-a-recurrence-relation-poker-chips%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Can't compile dgruyter and caption packagesLaTeX templates/packages for writing a patent specificationLatex...

                                          Schneeberg (Smreczany) Bibliografia | Menu...

                                          Hans Bellmer Spis treści Życiorys | Upamiętnienie | Przypisy | Bibliografia | Linki zewnętrzne |...