Mechanism of the formation of peracetic acid Unicorn Meta Zoo #1: Why another podcast? ...

"Working on a knee"

How to keep bees out of canned beverages?

Israeli soda type drink

A journey... into the MIND

In search of the origins of term censor, I hit a dead end stuck with the greek term, to censor, λογοκρίνω

`FindRoot [ ]`::jsing: Encountered a singular Jacobian at a point...WHY

RIP Packet Format

TV series episode where humans nuke aliens before decrypting their message that states they come in peace

What *exactly* is electrical current, voltage, and resistance?

Is Bran literally the world's memory?

When speaking, how do you change your mind mid-sentence?

What is the definining line between a helicopter and a drone a person can ride in?

Is there an efficient way for synchronising audio events real-time with LEDs using an MCU?

Why doesn't the university give past final exams' answers?

Are there existing rules/lore for MTG planeswalkers?

1 column , 2 columns-left , 2 columns-right , 3 column

What were wait-states, and why was it only an issue for PCs?

Is there a verb for listening stealthily?

Raising a bilingual kid. When should we introduce the majority language?

Did war bonds have better investment alternatives during WWII?

How can I wire a 9-position switch so that each position turns on one more LED than the one before?

Coin Game with infinite paradox

Has a Nobel Peace laureate ever been accused of war crimes?

What is a good proxy for government quality?



Mechanism of the formation of peracetic acid



Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar Manara
2019 Moderator Election Q&A - Question CollectionFormation of peracetic acid from acetic acid and hydrogen peroxide and its stability in their presenceIs this the correct mechanism of the formation of the nitronium (NO2+) ion from sodium nitrate and sulfuric acid?Diethyl Ether reaction mechanism1-5 dicarboxylic acid to lactone with SOCl2?Mechanism of substitution reaction with no change in stereochemistryMechanism of Fisher esterification: Does the carboxylic acid gives off OH- or H+?Why does the proton transfer from the oxygen to the nitrogen atom in imine formation not occur through an intramolecular process?NGP mechanism vs the simple carbocation mechanismAcid Catalysed Ring Expansion – Mechanism?Role of solvents in ozonolysis and oz0nolysis of alkynes with waterWhy does Oxygen act as Nucleophile over here?












2












$begingroup$


Wikipedia says that the equilibrium $$ce{H2O2 + CH3COOH ⇌ CH3COOOH + H2O}$$ occurs. What is its mechanism?

The following is my speculation.



The first possibility is that $ce{CH3COOH}$ is protonated into $ce{CH3CO(OH2)+}$ because of the strong acid condition and then turns into $ce{CH3C+O}$. Because the oxygen atom in $ce{H2O2}$ is electron rich, it will bond with the carbon atom with positive charge to form $ce{CH3C(=O)O(OH+)H}$ and then peracetic acid is formed by deprotonation.

The second one is that the oxygen atom in $ce{H2O2}$ attacks the carbon atom in $ce{MeCOOH}$, then the $ce{OH}$ in $ce{COOH}$ and
one of the $ce H$ in $ce {H2O2}$ leave.



Is the mechanism above right or not? If it is not, what's the correct one?



P.S. (this question does not answer my question)










share|improve this question







New contributor




Kemono Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    2












    $begingroup$


    Wikipedia says that the equilibrium $$ce{H2O2 + CH3COOH ⇌ CH3COOOH + H2O}$$ occurs. What is its mechanism?

    The following is my speculation.



    The first possibility is that $ce{CH3COOH}$ is protonated into $ce{CH3CO(OH2)+}$ because of the strong acid condition and then turns into $ce{CH3C+O}$. Because the oxygen atom in $ce{H2O2}$ is electron rich, it will bond with the carbon atom with positive charge to form $ce{CH3C(=O)O(OH+)H}$ and then peracetic acid is formed by deprotonation.

    The second one is that the oxygen atom in $ce{H2O2}$ attacks the carbon atom in $ce{MeCOOH}$, then the $ce{OH}$ in $ce{COOH}$ and
    one of the $ce H$ in $ce {H2O2}$ leave.



    Is the mechanism above right or not? If it is not, what's the correct one?



    P.S. (this question does not answer my question)










    share|improve this question







    New contributor




    Kemono Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      2












      2








      2





      $begingroup$


      Wikipedia says that the equilibrium $$ce{H2O2 + CH3COOH ⇌ CH3COOOH + H2O}$$ occurs. What is its mechanism?

      The following is my speculation.



      The first possibility is that $ce{CH3COOH}$ is protonated into $ce{CH3CO(OH2)+}$ because of the strong acid condition and then turns into $ce{CH3C+O}$. Because the oxygen atom in $ce{H2O2}$ is electron rich, it will bond with the carbon atom with positive charge to form $ce{CH3C(=O)O(OH+)H}$ and then peracetic acid is formed by deprotonation.

      The second one is that the oxygen atom in $ce{H2O2}$ attacks the carbon atom in $ce{MeCOOH}$, then the $ce{OH}$ in $ce{COOH}$ and
      one of the $ce H$ in $ce {H2O2}$ leave.



      Is the mechanism above right or not? If it is not, what's the correct one?



      P.S. (this question does not answer my question)










      share|improve this question







      New contributor




      Kemono Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Wikipedia says that the equilibrium $$ce{H2O2 + CH3COOH ⇌ CH3COOOH + H2O}$$ occurs. What is its mechanism?

      The following is my speculation.



      The first possibility is that $ce{CH3COOH}$ is protonated into $ce{CH3CO(OH2)+}$ because of the strong acid condition and then turns into $ce{CH3C+O}$. Because the oxygen atom in $ce{H2O2}$ is electron rich, it will bond with the carbon atom with positive charge to form $ce{CH3C(=O)O(OH+)H}$ and then peracetic acid is formed by deprotonation.

      The second one is that the oxygen atom in $ce{H2O2}$ attacks the carbon atom in $ce{MeCOOH}$, then the $ce{OH}$ in $ce{COOH}$ and
      one of the $ce H$ in $ce {H2O2}$ leave.



      Is the mechanism above right or not? If it is not, what's the correct one?



      P.S. (this question does not answer my question)







      organic-chemistry reaction-mechanism






      share|improve this question







      New contributor




      Kemono Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Kemono Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Kemono Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 1 hour ago









      Kemono ChenKemono Chen

      1134




      1134




      New contributor




      Kemono Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Kemono Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Kemono Chen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          You are not too far off. It is somewhat of a mixture of the two mechanisms you proposed. The carbonyl oxygen is much more basic than the non-carbonyl oxygen and will be protonated preferentially. Then hydrogen peroxide can attack, and once the tetrahedral intermediate collapses, deprotonation yields peracetic acid.



          enter image description here






          share|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "431"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            Kemono Chen is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114234%2fmechanism-of-the-formation-of-peracetic-acid%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            You are not too far off. It is somewhat of a mixture of the two mechanisms you proposed. The carbonyl oxygen is much more basic than the non-carbonyl oxygen and will be protonated preferentially. Then hydrogen peroxide can attack, and once the tetrahedral intermediate collapses, deprotonation yields peracetic acid.



            enter image description here






            share|improve this answer









            $endgroup$


















              2












              $begingroup$

              You are not too far off. It is somewhat of a mixture of the two mechanisms you proposed. The carbonyl oxygen is much more basic than the non-carbonyl oxygen and will be protonated preferentially. Then hydrogen peroxide can attack, and once the tetrahedral intermediate collapses, deprotonation yields peracetic acid.



              enter image description here






              share|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                You are not too far off. It is somewhat of a mixture of the two mechanisms you proposed. The carbonyl oxygen is much more basic than the non-carbonyl oxygen and will be protonated preferentially. Then hydrogen peroxide can attack, and once the tetrahedral intermediate collapses, deprotonation yields peracetic acid.



                enter image description here






                share|improve this answer









                $endgroup$



                You are not too far off. It is somewhat of a mixture of the two mechanisms you proposed. The carbonyl oxygen is much more basic than the non-carbonyl oxygen and will be protonated preferentially. Then hydrogen peroxide can attack, and once the tetrahedral intermediate collapses, deprotonation yields peracetic acid.



                enter image description here







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 55 mins ago









                ringoringo

                20.3k559112




                20.3k559112






















                    Kemono Chen is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    Kemono Chen is a new contributor. Be nice, and check out our Code of Conduct.













                    Kemono Chen is a new contributor. Be nice, and check out our Code of Conduct.












                    Kemono Chen is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Chemistry Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114234%2fmechanism-of-the-formation-of-peracetic-acid%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Paper upload error, “Upload failed: The top margin is 0.715 in on page 3, which is below the required...

                    Emraan Hashmi Filmografia | Linki zewnętrzne | Menu nawigacyjneGulshan GroverGulshan...

                    How can I write this formula?newline and italics added with leqWhy does widehat behave differently if I...