Contradiction proof for inequality of P and NP? Announcing the arrival of Valued Associate...

What is this word supposed to be?

Could moose/elk survive in the Amazon forest?

Is it acceptable to use working hours to read general interest books?

Could Neutrino technically as side-effect, incentivize centralization of the bitcoin network?

Would reducing the reference voltage of an ADC have any effect on accuracy?

Implementing 3DES algorithm in Java: is my code secure?

Contradiction proof for inequality of P and NP?

How would this chord from "Rocket Man" be analyzed?

Multiple options vs single option UI

A Paper Record is What I Hamper

Co-worker works way more than he should

What do you call the part of a novel that is not dialog?

Reattaching fallen shelf to wall?

My bank got bought out, am I now going to have to start filing tax returns in a different state?

Why does the Cisco show run command not show the full version, while the show version command does?

What ability score does a Hexblade's Pact Weapon use for attack and damage when wielded by another character?

Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.

Why did C use the -> operator instead of reusing the . operator?

Why do games have consumables?

How would I use different systems of magic when they are capable of the same effects?

What is the term for a person whose job is to place products on shelves in stores?

Rolling Stones Sway guitar solo chord function

"Rubric" as meaning "signature" or "personal mark" -- is this accepted usage?

How to avoid introduction cliches



Contradiction proof for inequality of P and NP?



Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Proof for P-complete is not closed under intersectionProof of sum of powerset?Contradiction between best-case running time of insertion sort and $nlog n$ lower bound?bounded length CoNP proofLogarithmic Randomness is Necessary for PCP TheoremTrouble seeing the contradiction in diagonalization proofIs it always possible to have one part of the reduction?Is this language NP Hard?Testing algorithm for a modified sieve of EratosthenesFinding a complexity by solving inequality












1












$begingroup$


I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^{k+1})$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




Is there something wrong with my proof? I was struggling for hours before asking this, though!










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




    We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^{k+1})$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




    Is there something wrong with my proof? I was struggling for hours before asking this, though!










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




      We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^{k+1})$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




      Is there something wrong with my proof? I was struggling for hours before asking this, though!










      share|cite|improve this question









      $endgroup$




      I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




      We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^{k+1})$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




      Is there something wrong with my proof? I was struggling for hours before asking this, though!







      complexity-theory time-complexity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      inverted_indexinverted_index

      1384




      1384






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$


          Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




          Sure.




          As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




          No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



          And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






          share|cite|improve this answer











          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "419"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108496%2fcontradiction-proof-for-inequality-of-p-and-np%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$


            Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




            Sure.




            As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




            No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



            And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






            share|cite|improve this answer











            $endgroup$


















              4












              $begingroup$


              Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




              Sure.




              As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




              No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



              And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






              share|cite|improve this answer











              $endgroup$
















                4












                4








                4





                $begingroup$


                Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




                Sure.




                As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




                No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



                And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






                share|cite|improve this answer











                $endgroup$




                Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




                Sure.




                As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




                No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



                And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 20 mins ago

























                answered 1 hour ago









                orlporlp

                6,1251826




                6,1251826






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108496%2fcontradiction-proof-for-inequality-of-p-and-np%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can't compile dgruyter and caption packagesLaTeX templates/packages for writing a patent specificationLatex...

                    Schneeberg (Smreczany) Bibliografia | Menu...

                    IEEEtran - How to include ORCID in TeX/PDF with PdfLatexIs there a standard way to include ORCID in TeX /...