Contradiction proof for inequality of P and NP? Announcing the arrival of Valued Associate...
What is this word supposed to be?
Could moose/elk survive in the Amazon forest?
Is it acceptable to use working hours to read general interest books?
Could Neutrino technically as side-effect, incentivize centralization of the bitcoin network?
Would reducing the reference voltage of an ADC have any effect on accuracy?
Implementing 3DES algorithm in Java: is my code secure?
Contradiction proof for inequality of P and NP?
How would this chord from "Rocket Man" be analyzed?
Multiple options vs single option UI
A Paper Record is What I Hamper
Co-worker works way more than he should
What do you call the part of a novel that is not dialog?
Reattaching fallen shelf to wall?
My bank got bought out, am I now going to have to start filing tax returns in a different state?
Why does the Cisco show run command not show the full version, while the show version command does?
What ability score does a Hexblade's Pact Weapon use for attack and damage when wielded by another character?
Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.
Why did C use the -> operator instead of reusing the . operator?
Why do games have consumables?
How would I use different systems of magic when they are capable of the same effects?
What is the term for a person whose job is to place products on shelves in stores?
Rolling Stones Sway guitar solo chord function
"Rubric" as meaning "signature" or "personal mark" -- is this accepted usage?
How to avoid introduction cliches
Contradiction proof for inequality of P and NP?
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Proof for P-complete is not closed under intersectionProof of sum of powerset?Contradiction between best-case running time of insertion sort and $nlog n$ lower bound?bounded length CoNP proofLogarithmic Randomness is Necessary for PCP TheoremTrouble seeing the contradiction in diagonalization proofIs it always possible to have one part of the reduction?Is this language NP Hard?Testing algorithm for a modified sieve of EratosthenesFinding a complexity by solving inequality
$begingroup$
I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.
We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^{k+1})$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.
Is there something wrong with my proof? I was struggling for hours before asking this, though!
complexity-theory time-complexity
$endgroup$
add a comment |
$begingroup$
I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.
We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^{k+1})$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.
Is there something wrong with my proof? I was struggling for hours before asking this, though!
complexity-theory time-complexity
$endgroup$
add a comment |
$begingroup$
I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.
We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^{k+1})$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.
Is there something wrong with my proof? I was struggling for hours before asking this, though!
complexity-theory time-complexity
$endgroup$
I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.
We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^{k+1})$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.
Is there something wrong with my proof? I was struggling for hours before asking this, though!
complexity-theory time-complexity
complexity-theory time-complexity
asked 1 hour ago
inverted_indexinverted_index
1384
1384
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.
Sure.
As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.
No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.
And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "419"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108496%2fcontradiction-proof-for-inequality-of-p-and-np%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.
Sure.
As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.
No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.
And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.
$endgroup$
add a comment |
$begingroup$
Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.
Sure.
As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.
No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.
And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.
$endgroup$
add a comment |
$begingroup$
Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.
Sure.
As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.
No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.
And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.
$endgroup$
Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.
Sure.
As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.
No. Polynomial time reductions aren't free. We can say it takes $O(n^{r(L)})$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.
And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.
edited 20 mins ago
answered 1 hour ago
orlporlp
6,1251826
6,1251826
add a comment |
add a comment |
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108496%2fcontradiction-proof-for-inequality-of-p-and-np%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown