Understanding Ceva's Theorem Announcing the arrival of Valued Associate #679: Cesar Manara ...
What causes the vertical darker bands in my photo?
Why is "Consequences inflicted." not a sentence?
Single word antonym of "flightless"
Apollo command module space walk?
Fundamental Solution of the Pell Equation
51k Euros annually for a family of 4 in Berlin: Is it enough?
Understanding Ceva's Theorem
The logistics of corpse disposal
2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?
Is it true that "carbohydrates are of no use for the basal metabolic need"?
How can I make names more distinctive without making them longer?
Output the ŋarâþ crîþ alphabet song without using (m)any letters
How do I keep my slimes from escaping their pens?
Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?
Should I discuss the type of campaign with my players?
Why do people hide their license plates in the EU?
What exactly is a "Meth" in Altered Carbon?
At the end of Thor: Ragnarok why don't the Asgardians turn and head for the Bifrost as per their original plan?
What is the meaning of the new sigil in Game of Thrones Season 8 intro?
When were vectors invented?
Identify plant with long narrow paired leaves and reddish stems
Dating a Former Employee
What does this icon in iOS Stardew Valley mean?
Okay to merge included columns on otherwise identical indexes?
Understanding Ceva's Theorem
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Ratio of areas of similar triangles given SSHow to calculate Fermat point in a triangle most efficiently?Prove this is a rectangleThe formula for the area of two triangles determined by the diagonals of a trapezoidUSAMO 2005, Problem3 (Triangle Geometry)- Is my solution correct?Corresponding side in similar trianglesMake isosceles triangle with matchsticksCutting a Triangle Through Its CentroidSimilar triangles and cross section integrals.Postulate or Theorem: The areas of similar plane figures are proportional their linear dimensions squared?
$begingroup$
In Ceva's Theorem, I understand that $frac{A_{triangle PXB}}{A_{triangle PXC}}=frac{BX}{CX}=frac{A_{triangle BXA}}{A_{triangle CXA}}$.
I would like clarification in understanding the following step which states:
$frac{A_{triangle APB}}{A_{triangle APC}}=frac{A_{triangle AXB} - A_{triangle PXB}}{A_{triangle AXC}-A_{triangle PXC}}=frac{BX}{CX}$
How does the subtraction of the two areas make it so that the new triangles are still proportional to $frac{BX}{CX}$? (even though they do not share those sides!)
geometry proof-verification triangles
$endgroup$
add a comment |
$begingroup$
In Ceva's Theorem, I understand that $frac{A_{triangle PXB}}{A_{triangle PXC}}=frac{BX}{CX}=frac{A_{triangle BXA}}{A_{triangle CXA}}$.
I would like clarification in understanding the following step which states:
$frac{A_{triangle APB}}{A_{triangle APC}}=frac{A_{triangle AXB} - A_{triangle PXB}}{A_{triangle AXC}-A_{triangle PXC}}=frac{BX}{CX}$
How does the subtraction of the two areas make it so that the new triangles are still proportional to $frac{BX}{CX}$? (even though they do not share those sides!)
geometry proof-verification triangles
$endgroup$
add a comment |
$begingroup$
In Ceva's Theorem, I understand that $frac{A_{triangle PXB}}{A_{triangle PXC}}=frac{BX}{CX}=frac{A_{triangle BXA}}{A_{triangle CXA}}$.
I would like clarification in understanding the following step which states:
$frac{A_{triangle APB}}{A_{triangle APC}}=frac{A_{triangle AXB} - A_{triangle PXB}}{A_{triangle AXC}-A_{triangle PXC}}=frac{BX}{CX}$
How does the subtraction of the two areas make it so that the new triangles are still proportional to $frac{BX}{CX}$? (even though they do not share those sides!)
geometry proof-verification triangles
$endgroup$
In Ceva's Theorem, I understand that $frac{A_{triangle PXB}}{A_{triangle PXC}}=frac{BX}{CX}=frac{A_{triangle BXA}}{A_{triangle CXA}}$.
I would like clarification in understanding the following step which states:
$frac{A_{triangle APB}}{A_{triangle APC}}=frac{A_{triangle AXB} - A_{triangle PXB}}{A_{triangle AXC}-A_{triangle PXC}}=frac{BX}{CX}$
How does the subtraction of the two areas make it so that the new triangles are still proportional to $frac{BX}{CX}$? (even though they do not share those sides!)
geometry proof-verification triangles
geometry proof-verification triangles
edited 3 hours ago
YuiTo Cheng
2,48341037
2,48341037
asked 3 hours ago
dragonkingdragonking
384
384
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$
$A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$
Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190589%2funderstanding-cevas-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$
$A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$
Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$
$endgroup$
add a comment |
$begingroup$
$A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$
$A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$
Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$
$endgroup$
add a comment |
$begingroup$
$A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$
$A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$
Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$
$endgroup$
$A_{triangle AXB}: A_{triangle AXC}=BX:CXRightarrow A_{triangle AXB}=frac{BX}{CX}A_{triangle AXC}$
$A_{triangle PXB}: A_{triangle PXC}=BX:CXRightarrow A_{triangle PXB}=frac{BX}{CX}A_{triangle PXC}$
Hence $$frac{A_{triangle A X B} -A _{triangle P X B}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{frac{BX}{CX}A_{triangle AXC}-frac{BX}{CX}A_{triangle PXC}}{A _{triangle A X C}-A_{ triangle P X C}}=frac{BX}{CX}$$
answered 2 hours ago
YuiTo ChengYuiTo Cheng
2,48341037
2,48341037
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190589%2funderstanding-cevas-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown