Calculus II Question The Next CEO of Stack OverflowLength of an AstroidUnderstanding this...

Does it take more energy to get to Venus or to Mars?

Why do we use the plural of movies in this phrase "We went to the movies last night."?

Bold, vivid family

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

What is the result of assigning to std::vector<T>::begin()?

How did the Bene Gesserit know how to make a Kwisatz Haderach?

MessageLevel in QGIS3

How do I avoid eval and parse?

How do we know the LHC results are robust?

How to count occurrences of text in a file?

How do I make a variable always equal to the result of some calculations?

Which kind of appliances can one connect to electric sockets located in a airplane's toilet?

Elegant way to replace substring in a regex with optional groups in Python?

Is there a way to save my career from absolute disaster?

How does the Z80 determine which peripheral sent an interrupt?

Complex fractions

What's the best way to handle refactoring a big file?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Interfacing a button to MCU (and PC) with 50m long cable

What is "(CFMCC)" on an ILS approach chart?

How to avoid supervisors with prejudiced views?

How to solve a differential equation with a term to a power?

Sending manuscript to multiple publishers

How to safely derail a train during transit?



Calculus II Question



The Next CEO of Stack OverflowLength of an AstroidUnderstanding this calculus simplificationIntegration problem: $int x^{2} -x 4^{-x^{2}} dx$Finding the parametric form of a standard equationApplication of “twice the integral” even if the function is not graphically even?Find the length of the parametric curveFind the exact length of the parametric curve(Not sure what I'm doing wrong)Calculus 2 moments question.The length of a parametric curveParametric curve length - calculus












3












$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    3 hours ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    3 hours ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    2 hours ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    2 hours ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    2 hours ago
















3












$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    3 hours ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    3 hours ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    2 hours ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    2 hours ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    2 hours ago














3












3








3





$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$







calculus integration






share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









rash

595116




595116






New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









curiousengcuriouseng

235




235




New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    3 hours ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    3 hours ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    2 hours ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    2 hours ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    2 hours ago














  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    3 hours ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    3 hours ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    2 hours ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    2 hours ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    2 hours ago








3




3




$begingroup$
What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
$endgroup$
– Ross Millikan
3 hours ago






$begingroup$
What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
$endgroup$
– Ross Millikan
3 hours ago






1




1




$begingroup$
Isn't there a square root missing in your length formula?
$endgroup$
– John Wayland Bales
3 hours ago




$begingroup$
Isn't there a square root missing in your length formula?
$endgroup$
– John Wayland Bales
3 hours ago




1




1




$begingroup$
We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
$endgroup$
– David Peterson
2 hours ago




$begingroup$
We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
$endgroup$
– David Peterson
2 hours ago




1




1




$begingroup$
@curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
$endgroup$
– John Omielan
2 hours ago




$begingroup$
@curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
$endgroup$
– John Omielan
2 hours ago




1




1




$begingroup$
@JohnOmielan that’s exactly what’s wrong
$endgroup$
– Shalop
2 hours ago




$begingroup$
@JohnOmielan that’s exactly what’s wrong
$endgroup$
– Shalop
2 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



Which gives us:



$$int_0^2 24sqrt{t^6+t^{10}}dt$$



Which, when integrated, gives us: $$68sqrt{17}-4$$



I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    2 hours ago










  • $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    2 hours ago



















3












$begingroup$

Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



Line 5 is correct.



Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
$$begin{align*}
24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
&= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
&= 6 int_{u=1}^{17} sqrt{u} , du \
&= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
&= 4 (17^{3/2} - 1) \
&= 68 sqrt{17} - 4.
end{align*}$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    curiouseng is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167826%2fcalculus-ii-question%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      2 hours ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      2 hours ago
















    3












    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      2 hours ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      2 hours ago














    3












    3








    3





    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$



    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 2 hours ago









    Bertrand Wittgenstein's GhostBertrand Wittgenstein's Ghost

    537217




    537217












    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      2 hours ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      2 hours ago


















    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      2 hours ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      2 hours ago
















    $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    2 hours ago




    $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    2 hours ago












    $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    2 hours ago




    $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    2 hours ago











    3












    $begingroup$

    Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



    Line 5 is correct.



    Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



    You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
    $$begin{align*}
    24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
    &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
    &= 6 int_{u=1}^{17} sqrt{u} , du \
    &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
    &= 4 (17^{3/2} - 1) \
    &= 68 sqrt{17} - 4.
    end{align*}$$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



      Line 5 is correct.



      Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



      You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
      $$begin{align*}
      24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
      &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
      &= 6 int_{u=1}^{17} sqrt{u} , du \
      &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
      &= 4 (17^{3/2} - 1) \
      &= 68 sqrt{17} - 4.
      end{align*}$$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



        Line 5 is correct.



        Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



        You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
        $$begin{align*}
        24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
        &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
        &= 6 int_{u=1}^{17} sqrt{u} , du \
        &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
        &= 4 (17^{3/2} - 1) \
        &= 68 sqrt{17} - 4.
        end{align*}$$






        share|cite|improve this answer









        $endgroup$



        Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



        Line 5 is correct.



        Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



        You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
        $$begin{align*}
        24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
        &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
        &= 6 int_{u=1}^{17} sqrt{u} , du \
        &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
        &= 4 (17^{3/2} - 1) \
        &= 68 sqrt{17} - 4.
        end{align*}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        heropupheropup

        64.8k764103




        64.8k764103






















            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.













            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.












            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167826%2fcalculus-ii-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can't compile dgruyter and caption packagesLaTeX templates/packages for writing a patent specificationLatex...

            Schneeberg (Smreczany) Bibliografia | Menu...

            Hans Bellmer Spis treści Życiorys | Upamiętnienie | Przypisy | Bibliografia | Linki zewnętrzne |...