What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?The...
Manga about a female worker who got dragged into another world together with this high school girl and she was just told she's not needed anymore
Was there ever an axiom rendered a theorem?
Email Account under attack (really) - anything I can do?
Need help identifying/translating a plaque in Tangier, Morocco
Does bootstrapped regression allow for inference?
New order #4: World
Ideas for 3rd eye abilities
"My colleague's body is amazing"
Shall I use personal or official e-mail account when registering to external websites for work purpose?
Where to refill my bottle in India?
How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?
Information to fellow intern about hiring?
What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?
Is every set a filtered colimit of finite sets?
Are cabin dividers used to "hide" the flex of the airplane?
Lied on resume at previous job
Can I find out the caloric content of bread by dehydrating it?
If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?
What causes the sudden spool-up sound from an F-16 when enabling afterburner?
Is there a familial term for apples and pears?
Is Social Media Science Fiction?
Could a US political party gain complete control over the government by removing checks & balances?
Finding files for which a command fails
aging parents with no investments
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
The closed subgroup of Lie groupExample: Lie group compact, abelian and disconnected.Center of compact lie group closed?Lie Subgroup Example - Explanation?Examples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.Maximal compact subgroup of abelian Lie groupA question on abelian Lie groups and maximal compact subgroupClosed Subgroup of $GL(n,mathbb{K})$ is Lie group.factoring a neighborhood of identity in a compact connected Lie group with a closed Lie subgroupLattice and abelian Lie groups
$begingroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
$endgroup$
add a comment |
$begingroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
$endgroup$
3
$begingroup$
Isn't $G=mathbb{R}$ and $H=mathbb{Z}$ an example of the non-iso you want? All you need to show is that $mathbb{R}$ is not iso to $S^1 times mathbb{Z}$. That's easy.
$endgroup$
– Randall
yesterday
add a comment |
$begingroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
$endgroup$
What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?
Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?
general-topology differential-geometry lie-groups lie-algebras
general-topology differential-geometry lie-groups lie-algebras
edited 18 hours ago
YuiTo Cheng
2,3184937
2,3184937
asked yesterday
Amrat AAmrat A
345111
345111
3
$begingroup$
Isn't $G=mathbb{R}$ and $H=mathbb{Z}$ an example of the non-iso you want? All you need to show is that $mathbb{R}$ is not iso to $S^1 times mathbb{Z}$. That's easy.
$endgroup$
– Randall
yesterday
add a comment |
3
$begingroup$
Isn't $G=mathbb{R}$ and $H=mathbb{Z}$ an example of the non-iso you want? All you need to show is that $mathbb{R}$ is not iso to $S^1 times mathbb{Z}$. That's easy.
$endgroup$
– Randall
yesterday
3
3
$begingroup$
Isn't $G=mathbb{R}$ and $H=mathbb{Z}$ an example of the non-iso you want? All you need to show is that $mathbb{R}$ is not iso to $S^1 times mathbb{Z}$. That's easy.
$endgroup$
– Randall
yesterday
$begingroup$
Isn't $G=mathbb{R}$ and $H=mathbb{Z}$ an example of the non-iso you want? All you need to show is that $mathbb{R}$ is not iso to $S^1 times mathbb{Z}$. That's easy.
$endgroup$
– Randall
yesterday
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbb{R}^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrm{rank}(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrm{rank}(pi_1(G))=mathrm{rank}(pi_1(H))+mathrm{rank}(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrm{rk}(pi_1(G))=mathrm{rk}(pi_1(Htimes (G/H))=mathrm{rk}(pi_1(G))+mathrm{rk}(pi_1(G/H))$$
and
$$mathrm{dim}(G)-mathrm{rk}(pi_1(G))=dim(Gtimes (G/H))-mathrm{rk}(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$begin{aligned}dim(G)-mathrm{rk}(pi_1(G)) &= dim(H)+dim(G/H)-(mathrm{rk}(pi_1(H))+mathrm{rk}(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrm{rank}(pi_1(Gtimes (G/H)))end{aligned}$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrm{GL}_2(mathbb{C})$ with its center $Z:={lambda I_2:lambdainmathbb{C}^times}$. Then, $mathrm{GL}_2(mathbb{C})/Zcong mathrm{PGL}_2(mathbb{C})$. To see that $mathrm{GL}_2(mathbb{C})notcong Ztimesmathrm{PGL}_2(mathbb{C})$ note that the derived (i.e. commutator) subgroup of the former is $mathrm{SL}_2(mathbb{C})$ whereas the latter is $mathrm{PGL}_2(mathbb{C})$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
yesterday
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
yesterday
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
yesterday
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
yesterday
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
yesterday
|
show 5 more comments
$begingroup$
Take $G = mathbb{R}$ and $H=mathbb{Z}$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbb{R}$ to $S^1 times mathbb{Z}$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbb{R}$ is connected but $S^1 times mathbb{Z}$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbb{R}$ has none, $S^1 times mathbb{Z}$ has at least one).
$endgroup$
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
23 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fwhat-is-an-example-of-an-abelian-lie-group-g-and-a-closed-subgroup-h-such-th%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbb{R}^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrm{rank}(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrm{rank}(pi_1(G))=mathrm{rank}(pi_1(H))+mathrm{rank}(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrm{rk}(pi_1(G))=mathrm{rk}(pi_1(Htimes (G/H))=mathrm{rk}(pi_1(G))+mathrm{rk}(pi_1(G/H))$$
and
$$mathrm{dim}(G)-mathrm{rk}(pi_1(G))=dim(Gtimes (G/H))-mathrm{rk}(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$begin{aligned}dim(G)-mathrm{rk}(pi_1(G)) &= dim(H)+dim(G/H)-(mathrm{rk}(pi_1(H))+mathrm{rk}(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrm{rank}(pi_1(Gtimes (G/H)))end{aligned}$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrm{GL}_2(mathbb{C})$ with its center $Z:={lambda I_2:lambdainmathbb{C}^times}$. Then, $mathrm{GL}_2(mathbb{C})/Zcong mathrm{PGL}_2(mathbb{C})$. To see that $mathrm{GL}_2(mathbb{C})notcong Ztimesmathrm{PGL}_2(mathbb{C})$ note that the derived (i.e. commutator) subgroup of the former is $mathrm{SL}_2(mathbb{C})$ whereas the latter is $mathrm{PGL}_2(mathbb{C})$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
yesterday
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
yesterday
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
yesterday
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
yesterday
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
yesterday
|
show 5 more comments
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbb{R}^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrm{rank}(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrm{rank}(pi_1(G))=mathrm{rank}(pi_1(H))+mathrm{rank}(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrm{rk}(pi_1(G))=mathrm{rk}(pi_1(Htimes (G/H))=mathrm{rk}(pi_1(G))+mathrm{rk}(pi_1(G/H))$$
and
$$mathrm{dim}(G)-mathrm{rk}(pi_1(G))=dim(Gtimes (G/H))-mathrm{rk}(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$begin{aligned}dim(G)-mathrm{rk}(pi_1(G)) &= dim(H)+dim(G/H)-(mathrm{rk}(pi_1(H))+mathrm{rk}(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrm{rank}(pi_1(Gtimes (G/H)))end{aligned}$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrm{GL}_2(mathbb{C})$ with its center $Z:={lambda I_2:lambdainmathbb{C}^times}$. Then, $mathrm{GL}_2(mathbb{C})/Zcong mathrm{PGL}_2(mathbb{C})$. To see that $mathrm{GL}_2(mathbb{C})notcong Ztimesmathrm{PGL}_2(mathbb{C})$ note that the derived (i.e. commutator) subgroup of the former is $mathrm{SL}_2(mathbb{C})$ whereas the latter is $mathrm{PGL}_2(mathbb{C})$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
yesterday
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
yesterday
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
yesterday
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
yesterday
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
yesterday
|
show 5 more comments
$begingroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbb{R}^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrm{rank}(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrm{rank}(pi_1(G))=mathrm{rank}(pi_1(H))+mathrm{rank}(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrm{rk}(pi_1(G))=mathrm{rk}(pi_1(Htimes (G/H))=mathrm{rk}(pi_1(G))+mathrm{rk}(pi_1(G/H))$$
and
$$mathrm{dim}(G)-mathrm{rk}(pi_1(G))=dim(Gtimes (G/H))-mathrm{rk}(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$begin{aligned}dim(G)-mathrm{rk}(pi_1(G)) &= dim(H)+dim(G/H)-(mathrm{rk}(pi_1(H))+mathrm{rk}(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrm{rank}(pi_1(Gtimes (G/H)))end{aligned}$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrm{GL}_2(mathbb{C})$ with its center $Z:={lambda I_2:lambdainmathbb{C}^times}$. Then, $mathrm{GL}_2(mathbb{C})/Zcong mathrm{PGL}_2(mathbb{C})$. To see that $mathrm{GL}_2(mathbb{C})notcong Ztimesmathrm{PGL}_2(mathbb{C})$ note that the derived (i.e. commutator) subgroup of the former is $mathrm{SL}_2(mathbb{C})$ whereas the latter is $mathrm{PGL}_2(mathbb{C})$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
$endgroup$
EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.
Every connected real abelian Lie group $G$ is isomorphic to $mathbb{R}^mtimes (S^1)^n$ for some $m$ and $n$. In fact, given $G$ you can read off $m$ and $n$ as $n=mathrm{rank}(pi_1(G))$ and $m=dim G-n$.
Now, if you have a short exact sequence of abelian Lie groups
$$0to Hto Gto G/Hto 0$$
Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence
$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$
So, $mathrm{rank}(pi_1(G))=mathrm{rank}(pi_1(H))+mathrm{rank}(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired
EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that
$$mathrm{rk}(pi_1(G))=mathrm{rk}(pi_1(Htimes (G/H))=mathrm{rk}(pi_1(G))+mathrm{rk}(pi_1(G/H))$$
and
$$mathrm{dim}(G)-mathrm{rk}(pi_1(G))=dim(Gtimes (G/H))-mathrm{rk}(pi_1(Htimes (G/H))$$
The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:
$$begin{aligned}dim(G)-mathrm{rk}(pi_1(G)) &= dim(H)+dim(G/H)-(mathrm{rk}(pi_1(H))+mathrm{rk}(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrm{rank}(pi_1(Gtimes (G/H)))end{aligned}$$
(Below is for the non-abelian situation)
Here's a simple interesting example.
Take $mathrm{GL}_2(mathbb{C})$ with its center $Z:={lambda I_2:lambdainmathbb{C}^times}$. Then, $mathrm{GL}_2(mathbb{C})/Zcong mathrm{PGL}_2(mathbb{C})$. To see that $mathrm{GL}_2(mathbb{C})notcong Ztimesmathrm{PGL}_2(mathbb{C})$ note that the derived (i.e. commutator) subgroup of the former is $mathrm{SL}_2(mathbb{C})$ whereas the latter is $mathrm{PGL}_2(mathbb{C})$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.
edited 18 hours ago
answered yesterday
Alex YoucisAlex Youcis
36.1k775115
36.1k775115
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
yesterday
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
yesterday
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
yesterday
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
yesterday
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
yesterday
|
show 5 more comments
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
yesterday
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
yesterday
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
yesterday
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
yesterday
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
yesterday
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
yesterday
$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
yesterday
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
yesterday
$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
yesterday
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
yesterday
$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
yesterday
1
1
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
yesterday
$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
yesterday
1
1
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
yesterday
$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
yesterday
|
show 5 more comments
$begingroup$
Take $G = mathbb{R}$ and $H=mathbb{Z}$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbb{R}$ to $S^1 times mathbb{Z}$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbb{R}$ is connected but $S^1 times mathbb{Z}$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbb{R}$ has none, $S^1 times mathbb{Z}$ has at least one).
$endgroup$
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
23 hours ago
add a comment |
$begingroup$
Take $G = mathbb{R}$ and $H=mathbb{Z}$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbb{R}$ to $S^1 times mathbb{Z}$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbb{R}$ is connected but $S^1 times mathbb{Z}$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbb{R}$ has none, $S^1 times mathbb{Z}$ has at least one).
$endgroup$
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
23 hours ago
add a comment |
$begingroup$
Take $G = mathbb{R}$ and $H=mathbb{Z}$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbb{R}$ to $S^1 times mathbb{Z}$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbb{R}$ is connected but $S^1 times mathbb{Z}$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbb{R}$ has none, $S^1 times mathbb{Z}$ has at least one).
$endgroup$
Take $G = mathbb{R}$ and $H=mathbb{Z}$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbb{R}$ to $S^1 times mathbb{Z}$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbb{R}$ is connected but $S^1 times mathbb{Z}$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbb{R}$ has none, $S^1 times mathbb{Z}$ has at least one).
answered 23 hours ago
RandallRandall
10.7k11431
10.7k11431
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
23 hours ago
add a comment |
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
23 hours ago
2
2
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
23 hours ago
$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
23 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fwhat-is-an-example-of-an-abelian-lie-group-g-and-a-closed-subgroup-h-such-th%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Isn't $G=mathbb{R}$ and $H=mathbb{Z}$ an example of the non-iso you want? All you need to show is that $mathbb{R}$ is not iso to $S^1 times mathbb{Z}$. That's easy.
$endgroup$
– Randall
yesterday