Extension of Splitting Fields over An Arbitrary FieldSplitting field implies Galois extensionWhat does it...

Life insurance that covers only simultaneous/dual deaths

Time dilation for a moving electronic clock

Latest web browser compatible with Windows 98

Make a transparent 448*448 image

What has been your most complicated TikZ drawing?

How does Dispel Magic work against Stoneskin?

What to do when during a meeting client people start to fight (even physically) with each others?

Is going from continuous data to categorical always wrong?

Rejected in 4th interview round citing insufficient years of experience

Excess Zinc in garden soil

It's a yearly task, alright

Good allowance savings plan?

Touchscreen-controlled dentist office snowman collector game

Ban on all campaign finance?

US to Europe trip with Canada layover- is 52 minutes enough?

When is a batch class instantiated when you schedule it?

Potentiometer like component

validation vs test vs training accuracy, which one to compare for claiming overfit?

Is it ok to include an epilogue dedicated to colleagues who passed away in the end of the manuscript?

Time travel short story where dinosaur doesn't taste like chicken

Best approach to update all entries in a list that is paginated?

How to deal with a cynical class?

Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?

What is the dot in “1.2.4."



Extension of Splitting Fields over An Arbitrary Field


Splitting field implies Galois extensionWhat does it mean to take the splitting field of $f(x)in F[x]$ over $K$ where $K/F$ is a field extensionCalculating Splitting Field Degree of ExtensionDetermining whether or not an extension is a splitting fieldElementary Field Theory: Extension Field of Degree 2Splitting field of $x^3 - 2$ over $mathbb{F}_5$Normal field extension implies splitting fieldSplitting fields and their degreesWhat things we have to take care of while finding the degree of field extension, splitting fields for some polynomial?A question on the definition of splitting field













4












$begingroup$


Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.



Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
    $endgroup$
    – Mike Earnest
    42 mins ago


















4












$begingroup$


Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.



Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
    $endgroup$
    – Mike Earnest
    42 mins ago
















4












4








4


0



$begingroup$


Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.



Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?










share|cite|improve this question









$endgroup$




Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.



Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?







abstract-algebra field-theory extension-field splitting-field






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 57 mins ago









DevilofHell'sKitchenDevilofHell'sKitchen

405




405








  • 2




    $begingroup$
    Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
    $endgroup$
    – Mike Earnest
    42 mins ago
















  • 2




    $begingroup$
    Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
    $endgroup$
    – Mike Earnest
    42 mins ago










2




2




$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
42 mins ago






$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
42 mins ago












1 Answer
1






active

oldest

votes


















5












$begingroup$

If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    34 mins ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147449%2fextension-of-splitting-fields-over-an-arbitrary-field%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    34 mins ago
















5












$begingroup$

If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    34 mins ago














5












5








5





$begingroup$

If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.






share|cite|improve this answer









$endgroup$



If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 47 mins ago









lhflhf

166k10171400




166k10171400








  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    34 mins ago














  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    34 mins ago








2




2




$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
34 mins ago




$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
34 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147449%2fextension-of-splitting-fields-over-an-arbitrary-field%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can't compile dgruyter and caption packagesLaTeX templates/packages for writing a patent specificationLatex...

Schneeberg (Smreczany) Bibliografia | Menu...

Hans Bellmer Spis treści Życiorys | Upamiętnienie | Przypisy | Bibliografia | Linki zewnętrzne |...