Extension of Splitting Fields over An Arbitrary FieldSplitting field implies Galois extensionWhat does it...
Life insurance that covers only simultaneous/dual deaths
Time dilation for a moving electronic clock
Latest web browser compatible with Windows 98
Make a transparent 448*448 image
What has been your most complicated TikZ drawing?
How does Dispel Magic work against Stoneskin?
What to do when during a meeting client people start to fight (even physically) with each others?
Is going from continuous data to categorical always wrong?
Rejected in 4th interview round citing insufficient years of experience
Excess Zinc in garden soil
It's a yearly task, alright
Good allowance savings plan?
Touchscreen-controlled dentist office snowman collector game
Ban on all campaign finance?
US to Europe trip with Canada layover- is 52 minutes enough?
When is a batch class instantiated when you schedule it?
Potentiometer like component
validation vs test vs training accuracy, which one to compare for claiming overfit?
Is it ok to include an epilogue dedicated to colleagues who passed away in the end of the manuscript?
Time travel short story where dinosaur doesn't taste like chicken
Best approach to update all entries in a list that is paginated?
How to deal with a cynical class?
Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?
What is the dot in “1.2.4."
Extension of Splitting Fields over An Arbitrary Field
Splitting field implies Galois extensionWhat does it mean to take the splitting field of $f(x)in F[x]$ over $K$ where $K/F$ is a field extensionCalculating Splitting Field Degree of ExtensionDetermining whether or not an extension is a splitting fieldElementary Field Theory: Extension Field of Degree 2Splitting field of $x^3 - 2$ over $mathbb{F}_5$Normal field extension implies splitting fieldSplitting fields and their degreesWhat things we have to take care of while finding the degree of field extension, splitting fields for some polynomial?A question on the definition of splitting field
$begingroup$
Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.
Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?
abstract-algebra field-theory extension-field splitting-field
$endgroup$
add a comment |
$begingroup$
Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.
Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?
abstract-algebra field-theory extension-field splitting-field
$endgroup$
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
42 mins ago
add a comment |
$begingroup$
Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.
Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?
abstract-algebra field-theory extension-field splitting-field
$endgroup$
Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.
Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?
abstract-algebra field-theory extension-field splitting-field
abstract-algebra field-theory extension-field splitting-field
asked 57 mins ago
DevilofHell'sKitchenDevilofHell'sKitchen
405
405
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
42 mins ago
add a comment |
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
42 mins ago
2
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
42 mins ago
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
42 mins ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
$endgroup$
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
34 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147449%2fextension-of-splitting-fields-over-an-arbitrary-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
$endgroup$
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
34 mins ago
add a comment |
$begingroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
$endgroup$
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
34 mins ago
add a comment |
$begingroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
$endgroup$
If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.
answered 47 mins ago
lhflhf
166k10171400
166k10171400
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
34 mins ago
add a comment |
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
34 mins ago
2
2
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
34 mins ago
$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
34 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147449%2fextension-of-splitting-fields-over-an-arbitrary-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
42 mins ago