Limits of a density functionWriting the density of a continuous random variable in terms of a...

Why was Lupin comfortable with saying Voldemort's name?

How do you voice extended chords?

False written accusations not made public - is there law to cover this?

Why is it that Bernie Sanders is always called a "socialist"?

Why does 0.-5 evaluate to -5?

Early credit roll before the end of the film

Explanation of a regular pattern only occuring for prime numbers

What is the wife of a henpecked husband called?

Separate environment for personal and development use under macOS

Is there a verb that means to inject with poison?

Removing whitespace between consecutive numbers

Citing paywalled articles accessed via illegal web sharing

A starship is travelling at 0.9c and collides with a small rock. Will it leave a clean hole through, or will more happen?

Do "fields" always combine by addition?

Is "the fire consumed everything on its way" correct?

Why didn't Tom Riddle take the presence of Fawkes and the Sorting Hat as more of a threat?

Why did Luke use his left hand to shoot?

How to access internet and run apt-get through a middle server?

TikZ graph edges not drawn nicely

How to visualize the Riemann-Roch theorem from complex analysis or geometric topology considerations?

Why did Democrats in the Senate oppose the Born-Alive Abortion Survivors Protection Act (2019 S.130)?

How to politely refuse in-office gym instructor for steroids and protein

How do I append a character to the end of every line in an excel cell?

Why would space fleets be aligned?



Limits of a density function


Writing the density of a continuous random variable in terms of a probabilityCriteria to select the number of neighbors in the k-th-nearest-neighbor density estimationExpectation of density ratio of two iid variablesFind the mode of a probability distribution functionProbability density function of transformed variableProve f(x) is a probability density function (pdf)Interpretation of the hazard rate and the probability density functionHow can I show that Uniform($0,A$) ,as $A to infty$, is an improper denisty?Parzen density estimates convergenceSymmetric probability density function proof













2












$begingroup$


If the limit of a density function exists does it the follow that it is zero? To put is formally



$$exists a in mathbb R lim_{t rightarrow infty} f(t) = a Rightarrow a= 0.$$










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    If the limit of a density function exists does it the follow that it is zero? To put is formally



    $$exists a in mathbb R lim_{t rightarrow infty} f(t) = a Rightarrow a= 0.$$










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      If the limit of a density function exists does it the follow that it is zero? To put is formally



      $$exists a in mathbb R lim_{t rightarrow infty} f(t) = a Rightarrow a= 0.$$










      share|cite|improve this question









      $endgroup$




      If the limit of a density function exists does it the follow that it is zero? To put is formally



      $$exists a in mathbb R lim_{t rightarrow infty} f(t) = a Rightarrow a= 0.$$







      pdf






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      Jesper HybelJesper Hybel

      921614




      921614






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Yes.



          Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



          But then:



          $$
          int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
          $$



          So $f$ cannot be a density function.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "65"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f394594%2flimits-of-a-density-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Yes.



            Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



            But then:



            $$
            int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
            $$



            So $f$ cannot be a density function.






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              Yes.



              Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



              But then:



              $$
              int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
              $$



              So $f$ cannot be a density function.






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                Yes.



                Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



                But then:



                $$
                int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
                $$



                So $f$ cannot be a density function.






                share|cite|improve this answer











                $endgroup$



                Yes.



                Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



                But then:



                $$
                int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
                $$



                So $f$ cannot be a density function.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 2 hours ago

























                answered 3 hours ago









                Matthew DruryMatthew Drury

                25.8k262104




                25.8k262104






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f394594%2flimits-of-a-density-function%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can't compile dgruyter and caption packagesLaTeX templates/packages for writing a patent specificationLatex...

                    Schneeberg (Smreczany) Bibliografia | Menu...

                    IEEEtran - How to include ORCID in TeX/PDF with PdfLatexIs there a standard way to include ORCID in TeX /...