Aluminum electrolytic or ceramic capacitors for linear regulator input and output?Replacing tantalum...
Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?
A single argument pattern definition applies to multiple-argument patterns?
How could an airship be repaired midflight?
Is there a place to find the pricing for things not mentioned in the PHB? (non-magical)
Are Roman Catholic priests ever addressed as pastor
What is the Japanese sound word for the clinking of money?
Is there a hypothetical scenario that would make Earth uninhabitable for humans, but not for (the majority of) other animals?
What is "focus distance lower/upper" and how is it different from depth of field?
Examples of transfinite towers
combinatorics floor summation
Do I need life insurance if I can cover my own funeral costs?
Describing a chess game in a novel
Python if-else code style for reduced code for rounding floats
How do you talk to someone whose loved one is dying?
How to pronounce "I ♥ Huckabees"?
Why one should not leave fingerprints on bulbs and plugs?
Employee lack of ownership
Why no Iridium-level flares from other satellites?
Counting models satisfying a boolean formula
Bach's Toccata and Fugue in D minor breaks the "no parallel octaves" rule?
Aluminum electrolytic or ceramic capacitors for linear regulator input and output?
What exactly is this small puffer fish doing and how did it manage to accomplish such a feat?
As a new Ubuntu desktop 18.04 LTS user, do I need to use ufw for a firewall or is iptables sufficient?
Why did it take so long to abandon sail after steamships were demonstrated?
Aluminum electrolytic or ceramic capacitors for linear regulator input and output?
Replacing tantalum capacitor with ceramic capacitor for Op AmpsCeramic or electrolytic capacitors for a switching buck regulator?Linear regulator LM1084 5.0V capacitors choicePurpose of a resistor at the input of a linear regulatorDamaging a linear regulator applying a voltage to the outputfrequency response — for linear regulatorHow critical are the input and out capacitor values in a linear voltage regulator?Choosing capacitors for a linear voltage regulatorSelecting the correct input/output capacitors for a 7805What causes a faulty Linear Voltage regulator to output wrong voltageInput and Output Capacitor for PoE + DCDC Controller
$begingroup$
I am using this linear voltage regulator. The datasheet indicates the input and output values for the capacitance to use, 1uF and 10uF respectively.
Should these capacitors be or a particular type, or does it not matter?
capacitor linear-regulator
$endgroup$
add a comment |
$begingroup$
I am using this linear voltage regulator. The datasheet indicates the input and output values for the capacitance to use, 1uF and 10uF respectively.
Should these capacitors be or a particular type, or does it not matter?
capacitor linear-regulator
$endgroup$
$begingroup$
This answer is related: electronics.stackexchange.com/a/426181/202270
$endgroup$
– Edgar Brown
48 mins ago
add a comment |
$begingroup$
I am using this linear voltage regulator. The datasheet indicates the input and output values for the capacitance to use, 1uF and 10uF respectively.
Should these capacitors be or a particular type, or does it not matter?
capacitor linear-regulator
$endgroup$
I am using this linear voltage regulator. The datasheet indicates the input and output values for the capacitance to use, 1uF and 10uF respectively.
Should these capacitors be or a particular type, or does it not matter?
capacitor linear-regulator
capacitor linear-regulator
asked 1 hour ago
A.S.A.S.
436214
436214
$begingroup$
This answer is related: electronics.stackexchange.com/a/426181/202270
$endgroup$
– Edgar Brown
48 mins ago
add a comment |
$begingroup$
This answer is related: electronics.stackexchange.com/a/426181/202270
$endgroup$
– Edgar Brown
48 mins ago
$begingroup$
This answer is related: electronics.stackexchange.com/a/426181/202270
$endgroup$
– Edgar Brown
48 mins ago
$begingroup$
This answer is related: electronics.stackexchange.com/a/426181/202270
$endgroup$
– Edgar Brown
48 mins ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.
Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.
Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.
$endgroup$
3
$begingroup$
The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
$endgroup$
– The Photon
53 mins ago
1
$begingroup$
That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
$endgroup$
– Hearth
23 mins ago
add a comment |
$begingroup$
The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.
The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.
$endgroup$
1
$begingroup$
Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
$endgroup$
– Hearth
1 hour ago
2
$begingroup$
I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
$endgroup$
– The Photon
49 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
return StackExchange.using("schematics", function () {
StackExchange.schematics.init();
});
}, "cicuitlab");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "135"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f427585%2faluminum-electrolytic-or-ceramic-capacitors-for-linear-regulator-input-and-outpu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.
Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.
Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.
$endgroup$
3
$begingroup$
The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
$endgroup$
– The Photon
53 mins ago
1
$begingroup$
That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
$endgroup$
– Hearth
23 mins ago
add a comment |
$begingroup$
It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.
Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.
Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.
$endgroup$
3
$begingroup$
The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
$endgroup$
– The Photon
53 mins ago
1
$begingroup$
That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
$endgroup$
– Hearth
23 mins ago
add a comment |
$begingroup$
It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.
Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.
Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.
$endgroup$
It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.
Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.
Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.
edited 15 mins ago
answered 1 hour ago
HearthHearth
4,5151136
4,5151136
3
$begingroup$
The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
$endgroup$
– The Photon
53 mins ago
1
$begingroup$
That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
$endgroup$
– Hearth
23 mins ago
add a comment |
3
$begingroup$
The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
$endgroup$
– The Photon
53 mins ago
1
$begingroup$
That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
$endgroup$
– Hearth
23 mins ago
3
3
$begingroup$
The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
$endgroup$
– The Photon
53 mins ago
$begingroup$
The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
$endgroup$
– The Photon
53 mins ago
1
1
$begingroup$
That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
$endgroup$
– Hearth
23 mins ago
$begingroup$
That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
$endgroup$
– Hearth
23 mins ago
add a comment |
$begingroup$
The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.
The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.
$endgroup$
1
$begingroup$
Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
$endgroup$
– Hearth
1 hour ago
2
$begingroup$
I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
$endgroup$
– The Photon
49 mins ago
add a comment |
$begingroup$
The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.
The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.
$endgroup$
1
$begingroup$
Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
$endgroup$
– Hearth
1 hour ago
2
$begingroup$
I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
$endgroup$
– The Photon
49 mins ago
add a comment |
$begingroup$
The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.
The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.
$endgroup$
The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.
The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.
answered 1 hour ago
user193589user193589
388
388
1
$begingroup$
Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
$endgroup$
– Hearth
1 hour ago
2
$begingroup$
I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
$endgroup$
– The Photon
49 mins ago
add a comment |
1
$begingroup$
Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
$endgroup$
– Hearth
1 hour ago
2
$begingroup$
I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
$endgroup$
– The Photon
49 mins ago
1
1
$begingroup$
Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
$endgroup$
– Hearth
1 hour ago
$begingroup$
Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
$endgroup$
– Hearth
1 hour ago
2
2
$begingroup$
I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
$endgroup$
– The Photon
49 mins ago
$begingroup$
I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
$endgroup$
– The Photon
49 mins ago
add a comment |
Thanks for contributing an answer to Electrical Engineering Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f427585%2faluminum-electrolytic-or-ceramic-capacitors-for-linear-regulator-input-and-outpu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This answer is related: electronics.stackexchange.com/a/426181/202270
$endgroup$
– Edgar Brown
48 mins ago