A problem in Probability theoryIf $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost...
What is the intuitive meaning of having a linear relationship between the logs of two variables?
What happens if you roll doubles 3 times then land on "Go to jail?"
Is this apparent Class Action settlement a spam message?
Tiptoe or tiphoof? Adjusting words to better fit fantasy races
How to write papers efficiently when English isn't my first language?
Lay out the Carpet
How does buying out courses with grant money work?
How to be diplomatic in refusing to write code that breaches the privacy of our users
Short story about space worker geeks who zone out by 'listening' to radiation from stars
Is there a problem with hiding "forgot password" until it's needed?
Do the temporary hit points from the Battlerager barbarian's Reckless Abandon stack if I make multiple attacks on my turn?
Avoiding estate tax by giving multiple gifts
What does "I’d sit this one out, Cap," imply or mean in the context?
How long to clear the 'suck zone' of a turbofan after start is initiated?
Increase performance creating Mandelbrot set in python
Hostile work environment after whistle-blowing on coworker and our boss. What do I do?
Return the Closest Prime Number
How to pronounce the slash sign
How does Loki do this?
Anatomically Correct Strange Women In Ponds Distributing Swords
How can a function with a hole (removable discontinuity) equal a function with no hole?
Where does the Z80 processor start executing from?
Sequence of Tenses: Translating the subjunctive
Implement the Thanos sorting algorithm
A problem in Probability theory
If $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost surelyTrying to establish an inequality on probabilityCan some probability triple give rise to any probability distribution?Expectation of $mathbb{E}(X^{k+1})$Is PDF unique for a random variable $X$ in given probability space?Conditional expectation on different probability measureAverage of Random variables converges in probability.Range of a random variable is measurableIn probability theory what does the notation $int_{Omega} X(omega) P(domega)$ mean?Probability theory: Convergence
$begingroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbb{E}(X^2)=1$ and $mathbb{E}(X)geq a >0$, prove that $$mathbb{P}(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A={xin Omega:X(x)geq lambda a}$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_{A^c}X$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_{A^c}X^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
$endgroup$
add a comment |
$begingroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbb{E}(X^2)=1$ and $mathbb{E}(X)geq a >0$, prove that $$mathbb{P}(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A={xin Omega:X(x)geq lambda a}$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_{A^c}X$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_{A^c}X^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
$endgroup$
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
add a comment |
$begingroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbb{E}(X^2)=1$ and $mathbb{E}(X)geq a >0$, prove that $$mathbb{P}(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A={xin Omega:X(x)geq lambda a}$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_{A^c}X$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_{A^c}X^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
$endgroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbb{E}(X^2)=1$ and $mathbb{E}(X)geq a >0$, prove that $$mathbb{P}(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A={xin Omega:X(x)geq lambda a}$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_{A^c}X$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_{A^c}X^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
probability integration lp-spaces
asked 3 hours ago
Xin FuXin Fu
1568
1568
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
add a comment |
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$
Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$
Square this and you're done.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
3 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$
Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$
Square this and you're done.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
3 hours ago
add a comment |
$begingroup$
You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$
Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$
Square this and you're done.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
3 hours ago
add a comment |
$begingroup$
You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$
Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$
Square this and you're done.
$endgroup$
You have
$$
alemathbb E(X) = int_{Xlelambda a}X,dP + int_{Xgelambda a}X,dP,le,lambda a + int_{Xgelambda a}X,dP.
$$
Hence,
$$
a(1-lambda),le,int_{Xgelambda a}X,dP,le,left(int_{Xgelambda a}X^2,dPright)^{1/2}cdot P(Xgelambda a)^{1/2},le,P(Xgelambda a)^{1/2}.
$$
Square this and you're done.
answered 3 hours ago
amsmathamsmath
3,364419
3,364419
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
3 hours ago
add a comment |
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
3 hours ago
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
3 hours ago
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
3 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
3 hours ago