BitNot does not flip bits in the way I expectedBitwise operators - Hamlet for MathematicaHow does Mathematica...
Single word request: Harming the benefactor
Can someone explain what is being said here in color publishing in the American Mathematical Monthly?
Why does the negative sign arise in this thermodynamic relation?
Does splitting a potentially monolithic application into several smaller ones help prevent bugs?
Time travel short story where dinosaur doesn't taste like chicken
A three room house but a three headED dog
Is having access to past exams cheating and, if yes, could it be proven just by a good grade?
Algorithm to convert a fixed-length string to the smallest possible collision-free representation?
Rejected in 4th interview round citing insufficient years of experience
Can't find the Shader/UVs tab
Low budget alien movie about the Earth being cooked
Should I tell my boss the work he did was worthless
How did Alan Turing break the enigma code using the hint given by the lady in the bar?
Fourth person (in Slavey language)
Is there an equal sign with wider gap?
Does "variables should live in the smallest scope as possible" include the case "variables should not exist if possible"?
Are babies of evil humanoid species inherently evil?
What are some noteworthy "mic-drop" moments in math?
Make a transparent 448*448 image
Why does Deadpool say "You're welcome, Canada," after shooting Ryan Reynolds in the end credits?
Reverse string, can I make it faster?
Why is this plane circling around the Lucknow airport every day?
infinitive telling the purpose
What wound would be of little consequence to a biped but terrible for a quadruped?
BitNot does not flip bits in the way I expected
Bitwise operators - Hamlet for MathematicaHow does Mathematica decide that Log[2,8] is integer?How is the mysterious Raw function used?Graph from binary matrix (not adjacency) respecting the original matrix positionsHow to replace the selected value in matrix with a specific digit?Performance-driven approach to using Big Data without killing the hard-driveUsing the binary search algorithm in a sorted grid
$begingroup$
Can anyone explain why the last result in these statements is not the bit-flipped version of arr?
(Debug) In[189]:= arr = {0, 0, 1, 0, 0, 0, 1, 0}
(Debug) Out[189]= {0, 0, 1, 0, 0, 0, 1, 0}
(Debug) In[190]:= FromDigits[%, 2]
(Debug) Out[190]= 34
(Debug) In[191]:= BitNot[%]
(Debug) Out[191]= -35
(Debug) In[192]:= IntegerDigits[%, 2, 8]
(Debug) Out[192]= {0, 0, 1, 0, 0, 0, 1, 1}
binary
New contributor
$endgroup$
|
show 4 more comments
$begingroup$
Can anyone explain why the last result in these statements is not the bit-flipped version of arr?
(Debug) In[189]:= arr = {0, 0, 1, 0, 0, 0, 1, 0}
(Debug) Out[189]= {0, 0, 1, 0, 0, 0, 1, 0}
(Debug) In[190]:= FromDigits[%, 2]
(Debug) Out[190]= 34
(Debug) In[191]:= BitNot[%]
(Debug) Out[191]= -35
(Debug) In[192]:= IntegerDigits[%, 2, 8]
(Debug) Out[192]= {0, 0, 1, 0, 0, 0, 1, 1}
binary
New contributor
$endgroup$
3
$begingroup$
"IntegerDigits[n] discards the sign of n."
$endgroup$
– kglr
2 hours ago
$begingroup$
Is there a work around?
$endgroup$
– bc888
2 hours ago
$begingroup$
not any I know of.
$endgroup$
– kglr
2 hours ago
$begingroup$
BitNot should yield 221
$endgroup$
– bc888
2 hours ago
5
$begingroup$
Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so thatBitNot[n]
is simply equivalent to-1-n
."
$endgroup$
– Chip Hurst
2 hours ago
|
show 4 more comments
$begingroup$
Can anyone explain why the last result in these statements is not the bit-flipped version of arr?
(Debug) In[189]:= arr = {0, 0, 1, 0, 0, 0, 1, 0}
(Debug) Out[189]= {0, 0, 1, 0, 0, 0, 1, 0}
(Debug) In[190]:= FromDigits[%, 2]
(Debug) Out[190]= 34
(Debug) In[191]:= BitNot[%]
(Debug) Out[191]= -35
(Debug) In[192]:= IntegerDigits[%, 2, 8]
(Debug) Out[192]= {0, 0, 1, 0, 0, 0, 1, 1}
binary
New contributor
$endgroup$
Can anyone explain why the last result in these statements is not the bit-flipped version of arr?
(Debug) In[189]:= arr = {0, 0, 1, 0, 0, 0, 1, 0}
(Debug) Out[189]= {0, 0, 1, 0, 0, 0, 1, 0}
(Debug) In[190]:= FromDigits[%, 2]
(Debug) Out[190]= 34
(Debug) In[191]:= BitNot[%]
(Debug) Out[191]= -35
(Debug) In[192]:= IntegerDigits[%, 2, 8]
(Debug) Out[192]= {0, 0, 1, 0, 0, 0, 1, 1}
binary
binary
New contributor
New contributor
edited 1 hour ago
m_goldberg
87.4k872198
87.4k872198
New contributor
asked 2 hours ago
bc888bc888
213
213
New contributor
New contributor
3
$begingroup$
"IntegerDigits[n] discards the sign of n."
$endgroup$
– kglr
2 hours ago
$begingroup$
Is there a work around?
$endgroup$
– bc888
2 hours ago
$begingroup$
not any I know of.
$endgroup$
– kglr
2 hours ago
$begingroup$
BitNot should yield 221
$endgroup$
– bc888
2 hours ago
5
$begingroup$
Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so thatBitNot[n]
is simply equivalent to-1-n
."
$endgroup$
– Chip Hurst
2 hours ago
|
show 4 more comments
3
$begingroup$
"IntegerDigits[n] discards the sign of n."
$endgroup$
– kglr
2 hours ago
$begingroup$
Is there a work around?
$endgroup$
– bc888
2 hours ago
$begingroup$
not any I know of.
$endgroup$
– kglr
2 hours ago
$begingroup$
BitNot should yield 221
$endgroup$
– bc888
2 hours ago
5
$begingroup$
Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so thatBitNot[n]
is simply equivalent to-1-n
."
$endgroup$
– Chip Hurst
2 hours ago
3
3
$begingroup$
"IntegerDigits[n] discards the sign of n."
$endgroup$
– kglr
2 hours ago
$begingroup$
"IntegerDigits[n] discards the sign of n."
$endgroup$
– kglr
2 hours ago
$begingroup$
Is there a work around?
$endgroup$
– bc888
2 hours ago
$begingroup$
Is there a work around?
$endgroup$
– bc888
2 hours ago
$begingroup$
not any I know of.
$endgroup$
– kglr
2 hours ago
$begingroup$
not any I know of.
$endgroup$
– kglr
2 hours ago
$begingroup$
BitNot should yield 221
$endgroup$
– bc888
2 hours ago
$begingroup$
BitNot should yield 221
$endgroup$
– bc888
2 hours ago
5
5
$begingroup$
Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so that
BitNot[n]
is simply equivalent to -1-n
."$endgroup$
– Chip Hurst
2 hours ago
$begingroup$
Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so that
BitNot[n]
is simply equivalent to -1-n
."$endgroup$
– Chip Hurst
2 hours ago
|
show 4 more comments
4 Answers
4
active
oldest
votes
$begingroup$
I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.
twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
twosComplement[35, 8]
(* {1, 1, 0, 1, 1, 1, 0, 1} *)
$endgroup$
add a comment |
$begingroup$
twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
twosComplement[35, 8]
{1, 1, 0, 1, 1, 1, 0, 1}
$endgroup$
add a comment |
$begingroup$
FlipBits[num_Integer, len_.] :=
Module[{arr}, arr = IntegerDigits[num, 2, len];
1 - arr]
New contributor
$endgroup$
add a comment |
$begingroup$
Without using IntegerDigits[]
:
With[{n = 34},
{n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11101₂}
With[{n = 34, p = 8},
{n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11011101₂}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
bc888 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193136%2fbitnot-does-not-flip-bits-in-the-way-i-expected%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.
twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
twosComplement[35, 8]
(* {1, 1, 0, 1, 1, 1, 0, 1} *)
$endgroup$
add a comment |
$begingroup$
I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.
twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
twosComplement[35, 8]
(* {1, 1, 0, 1, 1, 1, 0, 1} *)
$endgroup$
add a comment |
$begingroup$
I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.
twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
twosComplement[35, 8]
(* {1, 1, 0, 1, 1, 1, 0, 1} *)
$endgroup$
I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.
twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
twosComplement[35, 8]
(* {1, 1, 0, 1, 1, 1, 0, 1} *)
answered 2 hours ago
Rohit NamjoshiRohit Namjoshi
1,2861213
1,2861213
add a comment |
add a comment |
$begingroup$
twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
twosComplement[35, 8]
{1, 1, 0, 1, 1, 1, 0, 1}
$endgroup$
add a comment |
$begingroup$
twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
twosComplement[35, 8]
{1, 1, 0, 1, 1, 1, 0, 1}
$endgroup$
add a comment |
$begingroup$
twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
twosComplement[35, 8]
{1, 1, 0, 1, 1, 1, 0, 1}
$endgroup$
twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
twosComplement[35, 8]
{1, 1, 0, 1, 1, 1, 0, 1}
answered 1 hour ago
Okkes DulgerciOkkes Dulgerci
5,3341918
5,3341918
add a comment |
add a comment |
$begingroup$
FlipBits[num_Integer, len_.] :=
Module[{arr}, arr = IntegerDigits[num, 2, len];
1 - arr]
New contributor
$endgroup$
add a comment |
$begingroup$
FlipBits[num_Integer, len_.] :=
Module[{arr}, arr = IntegerDigits[num, 2, len];
1 - arr]
New contributor
$endgroup$
add a comment |
$begingroup$
FlipBits[num_Integer, len_.] :=
Module[{arr}, arr = IntegerDigits[num, 2, len];
1 - arr]
New contributor
$endgroup$
FlipBits[num_Integer, len_.] :=
Module[{arr}, arr = IntegerDigits[num, 2, len];
1 - arr]
New contributor
New contributor
answered 2 hours ago
bc888bc888
213
213
New contributor
New contributor
add a comment |
add a comment |
$begingroup$
Without using IntegerDigits[]
:
With[{n = 34},
{n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11101₂}
With[{n = 34, p = 8},
{n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11011101₂}
$endgroup$
add a comment |
$begingroup$
Without using IntegerDigits[]
:
With[{n = 34},
{n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11101₂}
With[{n = 34, p = 8},
{n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11011101₂}
$endgroup$
add a comment |
$begingroup$
Without using IntegerDigits[]
:
With[{n = 34},
{n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11101₂}
With[{n = 34, p = 8},
{n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11011101₂}
$endgroup$
Without using IntegerDigits[]
:
With[{n = 34},
{n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11101₂}
With[{n = 34, p = 8},
{n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
{100010₂, 11011101₂}
answered 1 hour ago
J. M. is slightly pensive♦J. M. is slightly pensive
97.8k10304464
97.8k10304464
add a comment |
add a comment |
bc888 is a new contributor. Be nice, and check out our Code of Conduct.
bc888 is a new contributor. Be nice, and check out our Code of Conduct.
bc888 is a new contributor. Be nice, and check out our Code of Conduct.
bc888 is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193136%2fbitnot-does-not-flip-bits-in-the-way-i-expected%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
"IntegerDigits[n] discards the sign of n."
$endgroup$
– kglr
2 hours ago
$begingroup$
Is there a work around?
$endgroup$
– bc888
2 hours ago
$begingroup$
not any I know of.
$endgroup$
– kglr
2 hours ago
$begingroup$
BitNot should yield 221
$endgroup$
– bc888
2 hours ago
5
$begingroup$
Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so that
BitNot[n]
is simply equivalent to-1-n
."$endgroup$
– Chip Hurst
2 hours ago