NMaximize is not converging to a solutionDeclaration of variables in large Linear Programming model with...
Can I make popcorn with any corn?
Was any UN Security Council vote triple-vetoed?
Do I have a twin with permutated remainders?
tikz convert color string to hex value
Important Resources for Dark Age Civilizations?
Why is consensus so controversial in Britain?
When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?
Did Shadowfax go to Valinor?
How to determine what difficulty is right for the game?
Why can't we play rap on piano?
How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?
High voltage LED indicator 40-1000 VDC without additional power supply
Does detail obscure or enhance action?
Could an aircraft fly or hover using only jets of compressed air?
Does an object always see its latest internal state irrespective of thread?
Perform and show arithmetic with LuaLaTeX
Arrow those variables!
Client team has low performances and low technical skills: we always fix their work and now they stop collaborate with us. How to solve?
Is it possible to run Internet Explorer on OS X El Capitan?
How is it possible to have an ability score that is less than 3?
How can bays and straits be determined in a procedurally generated map?
A case of the sniffles
How much RAM could one put in a typical 80386 setup?
Is it inappropriate for a student to attend their mentor's dissertation defense?
NMaximize is not converging to a solution
Declaration of variables in large Linear Programming model with NMaximizeHow trustworthy is NMaximize?Numeric range: present or notMaximalBy[#, “votes”] & not equal to MaximalBy[“votes”]?Maximimize not working properly?Does fitting data get stuck by non-homogeneous interval of data?How to find maximum (not with numbers,but with parameters) of 2-variables function under constraints?Hot to single out numeric values from NMaximizeNSum: Summand (or its derivative) is not numerical at pointProblem with constraints of NMaximize
$begingroup$
I am trying to use NMaximize
to find the maximum value of a variable that satisfies the given constraints. Since the constraints aren't straightforward, I am using the function.
I can see the constraints are such that the value is bounded but I get the below warning messages:
NMaximize::cvmit: Failed to converge to the requested accuracy or
precision within 100000 iterations.
NMaximize::cvdiv: Failed to
converge to a solution. The function may be unbounded.
The constraint and the way I am using the function is as below:
constraint = (x | y) [Element]
Integers && ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x -
3.63201*10^84 x^2]) || (10713. <= x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2]))
maxX =
NMaximize[{x, constraint}, {x, y}, MaxIterations -> 100000]
I have increased the MaxIterations
from 100 to 100000 but it doesn't seem to converge. I am not sure if increasing the MaxIterations
is the solution. Can you please guide me with this?
functions maximum
$endgroup$
|
show 1 more comment
$begingroup$
I am trying to use NMaximize
to find the maximum value of a variable that satisfies the given constraints. Since the constraints aren't straightforward, I am using the function.
I can see the constraints are such that the value is bounded but I get the below warning messages:
NMaximize::cvmit: Failed to converge to the requested accuracy or
precision within 100000 iterations.
NMaximize::cvdiv: Failed to
converge to a solution. The function may be unbounded.
The constraint and the way I am using the function is as below:
constraint = (x | y) [Element]
Integers && ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x -
3.63201*10^84 x^2]) || (10713. <= x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2]))
maxX =
NMaximize[{x, constraint}, {x, y}, MaxIterations -> 100000]
I have increased the MaxIterations
from 100 to 100000 but it doesn't seem to converge. I am not sure if increasing the MaxIterations
is the solution. Can you please guide me with this?
functions maximum
$endgroup$
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
10 hours ago
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?constraint /. x -> 19762
results iny [Element] Integers && 7229.16 < y < 7344.29
andconstraint /. x -> 19763
results inFalse
.
$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB, I think forx
,y
isn't needed. Thanks for pointing this out. But if I am trying to maximizey
, I need to maximize over both the variables sincey
is an expression ofx
, right?
$endgroup$
– gaganso
10 hours ago
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
9 hours ago
$begingroup$
@JimB, thank you. But I think the value of $y$ can be greater than 7344 for different values of $x$. For example, at $x = 7504$, the maximum value of y is 13937.
$endgroup$
– gaganso
9 hours ago
|
show 1 more comment
$begingroup$
I am trying to use NMaximize
to find the maximum value of a variable that satisfies the given constraints. Since the constraints aren't straightforward, I am using the function.
I can see the constraints are such that the value is bounded but I get the below warning messages:
NMaximize::cvmit: Failed to converge to the requested accuracy or
precision within 100000 iterations.
NMaximize::cvdiv: Failed to
converge to a solution. The function may be unbounded.
The constraint and the way I am using the function is as below:
constraint = (x | y) [Element]
Integers && ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x -
3.63201*10^84 x^2]) || (10713. <= x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2]))
maxX =
NMaximize[{x, constraint}, {x, y}, MaxIterations -> 100000]
I have increased the MaxIterations
from 100 to 100000 but it doesn't seem to converge. I am not sure if increasing the MaxIterations
is the solution. Can you please guide me with this?
functions maximum
$endgroup$
I am trying to use NMaximize
to find the maximum value of a variable that satisfies the given constraints. Since the constraints aren't straightforward, I am using the function.
I can see the constraints are such that the value is bounded but I get the below warning messages:
NMaximize::cvmit: Failed to converge to the requested accuracy or
precision within 100000 iterations.
NMaximize::cvdiv: Failed to
converge to a solution. The function may be unbounded.
The constraint and the way I am using the function is as below:
constraint = (x | y) [Element]
Integers && ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x -
3.63201*10^84 x^2]) || (10713. <= x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-43 Sqrt[
4.98614*10^92 + 4.65469*10^88 x - 3.63201*10^84 x^2]))
maxX =
NMaximize[{x, constraint}, {x, y}, MaxIterations -> 100000]
I have increased the MaxIterations
from 100 to 100000 but it doesn't seem to converge. I am not sure if increasing the MaxIterations
is the solution. Can you please guide me with this?
functions maximum
functions maximum
asked 10 hours ago
gagansogaganso
1478
1478
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
10 hours ago
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?constraint /. x -> 19762
results iny [Element] Integers && 7229.16 < y < 7344.29
andconstraint /. x -> 19763
results inFalse
.
$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB, I think forx
,y
isn't needed. Thanks for pointing this out. But if I am trying to maximizey
, I need to maximize over both the variables sincey
is an expression ofx
, right?
$endgroup$
– gaganso
10 hours ago
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
9 hours ago
$begingroup$
@JimB, thank you. But I think the value of $y$ can be greater than 7344 for different values of $x$. For example, at $x = 7504$, the maximum value of y is 13937.
$endgroup$
– gaganso
9 hours ago
|
show 1 more comment
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
10 hours ago
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?constraint /. x -> 19762
results iny [Element] Integers && 7229.16 < y < 7344.29
andconstraint /. x -> 19763
results inFalse
.
$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB, I think forx
,y
isn't needed. Thanks for pointing this out. But if I am trying to maximizey
, I need to maximize over both the variables sincey
is an expression ofx
, right?
$endgroup$
– gaganso
10 hours ago
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
9 hours ago
$begingroup$
@JimB, thank you. But I think the value of $y$ can be greater than 7344 for different values of $x$. For example, at $x = 7504$, the maximum value of y is 13937.
$endgroup$
– gaganso
9 hours ago
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
10 hours ago
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
10 hours ago
1
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?
constraint /. x -> 19762
results in y [Element] Integers && 7229.16 < y < 7344.29
and constraint /. x -> 19763
results in False
.$endgroup$
– JimB
10 hours ago
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?
constraint /. x -> 19762
results in y [Element] Integers && 7229.16 < y < 7344.29
and constraint /. x -> 19763
results in False
.$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB, I think for
x
, y
isn't needed. Thanks for pointing this out. But if I am trying to maximize y
, I need to maximize over both the variables since y
is an expression of x
, right?$endgroup$
– gaganso
10 hours ago
$begingroup$
@JimB, I think for
x
, y
isn't needed. Thanks for pointing this out. But if I am trying to maximize y
, I need to maximize over both the variables since y
is an expression of x
, right?$endgroup$
– gaganso
10 hours ago
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
9 hours ago
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
9 hours ago
$begingroup$
@JimB, thank you. But I think the value of $y$ can be greater than 7344 for different values of $x$. For example, at $x = 7504$, the maximum value of y is 13937.
$endgroup$
– gaganso
9 hours ago
$begingroup$
@JimB, thank you. But I think the value of $y$ can be greater than 7344 for different values of $x$. For example, at $x = 7504$, the maximum value of y is 13937.
$endgroup$
– gaganso
9 hours ago
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[{x, constraint2}, {x, y}]
(* {19762, {x -> 19762, y -> 7287}} *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[{y, constraint2}, {x, y}]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, {x, y}];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ {x, y}),
Epilog -> {Red,
AbsolutePointSize[3],
Point[{x, y} /. maxX[[2]]],
Point[{x, y} /. maxY[[2]]]}]
$endgroup$
add a comment |
$begingroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[{x, constraint2}, {x, y}, Integers,
MaxIterations -> 10000]
{19762., {x -> 19762, y -> 7311}}
And with your definition of constraint
:
constraint /. maxX[[2]]
True
$endgroup$
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
10 hours ago
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[{y, res}, {x, y}, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
10 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194684%2fnmaximize-is-not-converging-to-a-solution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[{x, constraint2}, {x, y}]
(* {19762, {x -> 19762, y -> 7287}} *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[{y, constraint2}, {x, y}]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, {x, y}];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ {x, y}),
Epilog -> {Red,
AbsolutePointSize[3],
Point[{x, y} /. maxX[[2]]],
Point[{x, y} /. maxY[[2]]]}]
$endgroup$
add a comment |
$begingroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[{x, constraint2}, {x, y}]
(* {19762, {x -> 19762, y -> 7287}} *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[{y, constraint2}, {x, y}]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, {x, y}];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ {x, y}),
Epilog -> {Red,
AbsolutePointSize[3],
Point[{x, y} /. maxX[[2]]],
Point[{x, y} /. maxY[[2]]]}]
$endgroup$
add a comment |
$begingroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[{x, constraint2}, {x, y}]
(* {19762, {x -> 19762, y -> 7287}} *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[{y, constraint2}, {x, y}]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, {x, y}];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ {x, y}),
Epilog -> {Red,
AbsolutePointSize[3],
Point[{x, y} /. maxX[[2]]],
Point[{x, y} /. maxY[[2]]]}]
$endgroup$
Rationalize
the constraint:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y < 2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <= x <=
19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) //
Rationalize[#, 0] & // Simplify;
With the Rationalized
constraint you can use Maximize
:
maxX = Maximize[{x, constraint2}, {x, y}]
(* {19762, {x -> 19762, y -> 7287}} *)
constraint2 /. maxX[[2]]
(* True *)
EDIT: To find maximum y
(maxY = Maximize[{y, constraint2}, {x, y}]) // N
To plot the region defined by the constraint:
reg = ImplicitRegion[constraint2, {x, y}];
Region[reg,
Frame -> True,
FrameLabel -> (Style[#, 12, Bold] & /@ {x, y}),
Epilog -> {Red,
AbsolutePointSize[3],
Point[{x, y} /. maxX[[2]]],
Point[{x, y} /. maxY[[2]]]}]
edited 9 hours ago
answered 9 hours ago
Bob HanlonBob Hanlon
61.4k33598
61.4k33598
add a comment |
add a comment |
$begingroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[{x, constraint2}, {x, y}, Integers,
MaxIterations -> 10000]
{19762., {x -> 19762, y -> 7311}}
And with your definition of constraint
:
constraint /. maxX[[2]]
True
$endgroup$
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
10 hours ago
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[{y, res}, {x, y}, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
10 hours ago
add a comment |
$begingroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[{x, constraint2}, {x, y}, Integers,
MaxIterations -> 10000]
{19762., {x -> 19762, y -> 7311}}
And with your definition of constraint
:
constraint /. maxX[[2]]
True
$endgroup$
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
10 hours ago
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[{y, res}, {x, y}, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
10 hours ago
add a comment |
$begingroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[{x, constraint2}, {x, y}, Integers,
MaxIterations -> 10000]
{19762., {x -> 19762, y -> 7311}}
And with your definition of constraint
:
constraint /. maxX[[2]]
True
$endgroup$
You have numbers spread a wide range of magnitudes for no good reason. This range is probably too wide for machine precision arithmetic. Also telling NMinimize
explicitly that this an integer optimization problem seems to help. Try this:
constraint2 = ((x == 0 && 1. <= y <= 12720.) || (1. <= x <= 10712. &&
0 <= y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2]) || (10713. <=
x <= 19762. &&
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) -
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2] < y <
2.08565*10^-36 (3.04959*10^39 + 2.24751*10^34 x) +
2.8484*10^-1 Sqrt[
4.98614*10^8 + 4.65469*10^4 x - 3.63201 x^2])) // Expand
maxX = NMaximize[{x, constraint2}, {x, y}, Integers,
MaxIterations -> 10000]
{19762., {x -> 19762, y -> 7311}}
And with your definition of constraint
:
constraint /. maxX[[2]]
True
edited 10 hours ago
answered 10 hours ago
Henrik SchumacherHenrik Schumacher
59.3k582165
59.3k582165
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
10 hours ago
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[{y, res}, {x, y}, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
10 hours ago
add a comment |
$begingroup$
Butconstraint /. x -> 19762 /. y -> 8647
results inFalse
?
$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
10 hours ago
$begingroup$
@HenrikSchumacher, thank you for this. This works forx
but when I try to find the maximumy
similarly, I still get the same message -NMaximize[{y, res}, {x, y}, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.
$endgroup$
– gaganso
10 hours ago
$begingroup$
But
constraint /. x -> 19762 /. y -> 8647
results in False
?$endgroup$
– JimB
10 hours ago
$begingroup$
But
constraint /. x -> 19762 /. y -> 8647
results in False
?$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
10 hours ago
$begingroup$
@JimB D'oh. Yeah, I did the simplification wrong. -.- Thanks for pointing that out.
$endgroup$
– Henrik Schumacher
10 hours ago
$begingroup$
@HenrikSchumacher, thank you for this. This works for
x
but when I try to find the maximum y
similarly, I still get the same message - NMaximize[{y, res}, {x, y}, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.$endgroup$
– gaganso
10 hours ago
$begingroup$
@HenrikSchumacher, thank you for this. This works for
x
but when I try to find the maximum y
similarly, I still get the same message - NMaximize[{y, res}, {x, y}, Integers, MaxIterations -> 100000]
. Output: NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded.$endgroup$
– gaganso
10 hours ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194684%2fnmaximize-is-not-converging-to-a-solution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Could try maximizing over individual regions of the piecewise set-up. But the machine precision values will make validation of inequalities kind of iffy.
$endgroup$
– Daniel Lichtblau
10 hours ago
1
$begingroup$
I'm not seeing what $y$ has to do with this. Wouldn't the maximum value of $x$ be 19762?
constraint /. x -> 19762
results iny [Element] Integers && 7229.16 < y < 7344.29
andconstraint /. x -> 19763
results inFalse
.$endgroup$
– JimB
10 hours ago
$begingroup$
@JimB, I think for
x
,y
isn't needed. Thanks for pointing this out. But if I am trying to maximizey
, I need to maximize over both the variables sincey
is an expression ofx
, right?$endgroup$
– gaganso
10 hours ago
$begingroup$
Yes, if that's what you want. The general solution appears to be $x = 19762$ and $7230leq y leq 7344$. So to maximize $y$ you'd choose $7344$.
$endgroup$
– JimB
9 hours ago
$begingroup$
@JimB, thank you. But I think the value of $y$ can be greater than 7344 for different values of $x$. For example, at $x = 7504$, the maximum value of y is 13937.
$endgroup$
– gaganso
9 hours ago