How do I make the characters have the same size? The Next CEO of Stack Overflowequal size...
What was the first Unix version to run on a microcomputer?
Can we say or write : "No, it'sn't"?
If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?
When you upcast Blindness/Deafness, do all targets suffer the same effect?
Would a completely good Muggle be able to use a wand?
"misplaced omit" error when >{centering} columns
Calculator final project in Python
What happened in Rome, when the western empire "fell"?
Rotate a column
Writing differences on a blackboard
Is there a way to save my career from absolute disaster?
Does Germany produce more waste than the US?
Method for adding error messages to a dictionary given a key
Can you be charged for obstruction for refusing to answer questions?
Is French Guiana a (hard) EU border?
Why does standard notation not preserve intervals (visually)
WOW air has ceased operation, can I get my tickets refunded?
Is it possible to use a NPN BJT as switch, from single power source?
Is it possible to replace duplicates of a character with one character using tr
Make solar eclipses exceedingly rare, but still have new moons
Is the D&D universe the same as the Forgotten Realms universe?
Grabbing quick drinks
Can this equation be simplified further?
What did we know about the Kessel run before the prequels?
How do I make the characters have the same size?
The Next CEO of Stack Overflowequal size numerator and denominatorHow to put two subfigures with subcaptions side by side, with the same height, calculated to add up to a specified overall width?How can I force the same resizing factor for two includegraphics?How to make the table fit better?How to make long table fit using column environment in beamerIs there a way to adjust the size of the footnote bar in BeamerHow can I redefine the minus sign to be of the same width as plus?How to match font size in TikZ figures and document textHow to scale multiple elements to maximum width while keeping their relative size fixed?How to change the height of several rows only?Resize several math operators to the same size
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
New contributor
add a comment |
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
New contributor
1
Usedisplaystyle
at the beginning of the outer denominator.
– L. F.
10 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
7 mins ago
add a comment |
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
New contributor
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
resize
New contributor
New contributor
New contributor
asked 13 mins ago
K.MK.M
1214
1214
New contributor
New contributor
1
Usedisplaystyle
at the beginning of the outer denominator.
– L. F.
10 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
7 mins ago
add a comment |
1
Usedisplaystyle
at the beginning of the outer denominator.
– L. F.
10 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
7 mins ago
1
1
Use
displaystyle
at the beginning of the outer denominator.– L. F.
10 mins ago
Use
displaystyle
at the beginning of the outer denominator.– L. F.
10 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
7 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
7 mins ago
add a comment |
1 Answer
1
active
oldest
votes
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
K.M is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482365%2fhow-do-i-make-the-characters-have-the-same-size%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
add a comment |
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
add a comment |
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
answered 9 mins ago
Przemysław ScherwentkePrzemysław Scherwentke
29.9k54795
29.9k54795
add a comment |
add a comment |
K.M is a new contributor. Be nice, and check out our Code of Conduct.
K.M is a new contributor. Be nice, and check out our Code of Conduct.
K.M is a new contributor. Be nice, and check out our Code of Conduct.
K.M is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482365%2fhow-do-i-make-the-characters-have-the-same-size%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Use
displaystyle
at the beginning of the outer denominator.– L. F.
10 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
7 mins ago