How do I make the characters have the same size? The Next CEO of Stack Overflowequal size...

What was the first Unix version to run on a microcomputer?

Can we say or write : "No, it'sn't"?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

When you upcast Blindness/Deafness, do all targets suffer the same effect?

Would a completely good Muggle be able to use a wand?

"misplaced omit" error when >{centering} columns

Calculator final project in Python

What happened in Rome, when the western empire "fell"?

Rotate a column

Writing differences on a blackboard

Is there a way to save my career from absolute disaster?

Does Germany produce more waste than the US?

Method for adding error messages to a dictionary given a key

Can you be charged for obstruction for refusing to answer questions?

Is French Guiana a (hard) EU border?

Why does standard notation not preserve intervals (visually)

WOW air has ceased operation, can I get my tickets refunded?

Is it possible to use a NPN BJT as switch, from single power source?

Is it possible to replace duplicates of a character with one character using tr

Make solar eclipses exceedingly rare, but still have new moons

Is the D&D universe the same as the Forgotten Realms universe?

Grabbing quick drinks

Can this equation be simplified further?

What did we know about the Kessel run before the prequels?



How do I make the characters have the same size?



The Next CEO of Stack Overflowequal size numerator and denominatorHow to put two subfigures with subcaptions side by side, with the same height, calculated to add up to a specified overall width?How can I force the same resizing factor for two includegraphics?How to make the table fit better?How to make long table fit using column environment in beamerIs there a way to adjust the size of the footnote bar in BeamerHow can I redefine the minus sign to be of the same width as plus?How to match font size in TikZ figures and document textHow to scale multiple elements to maximum width while keeping their relative size fixed?How to change the height of several rows only?Resize several math operators to the same size












1















Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?










share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    10 mins ago











  • Possible duplicate of equal size numerator and denominator

    – L. F.
    7 mins ago
















1















Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?










share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    10 mins ago











  • Possible duplicate of equal size numerator and denominator

    – L. F.
    7 mins ago














1












1








1








Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?










share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?







resize






share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 13 mins ago









K.MK.M

1214




1214




New contributor




K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






K.M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    10 mins ago











  • Possible duplicate of equal size numerator and denominator

    – L. F.
    7 mins ago














  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    10 mins ago











  • Possible duplicate of equal size numerator and denominator

    – L. F.
    7 mins ago








1




1





Use displaystyle at the beginning of the outer denominator.

– L. F.
10 mins ago





Use displaystyle at the beginning of the outer denominator.

– L. F.
10 mins ago













Possible duplicate of equal size numerator and denominator

– L. F.
7 mins ago





Possible duplicate of equal size numerator and denominator

– L. F.
7 mins ago










1 Answer
1






active

oldest

votes


















1














You want to

begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


or simply dfrac as you can use amsmath package.





share
























    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "85"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    K.M is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482365%2fhow-do-i-make-the-characters-have-the-same-size%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    You want to

    begin{align*}
    sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
    &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
    \
    &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
    \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

    end{align*}


    or simply dfrac as you can use amsmath package.





    share




























      1














      You want to

      begin{align*}
      sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
      &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
      \
      &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
      \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

      end{align*}


      or simply dfrac as you can use amsmath package.





      share


























        1












        1








        1







        You want to

        begin{align*}
        sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        \
        &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
        \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

        end{align*}


        or simply dfrac as you can use amsmath package.





        share













        You want to

        begin{align*}
        sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        \
        &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
        \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

        end{align*}


        or simply dfrac as you can use amsmath package.






        share











        share


        share










        answered 9 mins ago









        Przemysław ScherwentkePrzemysław Scherwentke

        29.9k54795




        29.9k54795






















            K.M is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            K.M is a new contributor. Be nice, and check out our Code of Conduct.













            K.M is a new contributor. Be nice, and check out our Code of Conduct.












            K.M is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482365%2fhow-do-i-make-the-characters-have-the-same-size%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can't compile dgruyter and caption packagesLaTeX templates/packages for writing a patent specificationLatex...

            Schneeberg (Smreczany) Bibliografia | Menu...

            Hans Bellmer Spis treści Życiorys | Upamiętnienie | Przypisy | Bibliografia | Linki zewnętrzne |...