A small doubt about the dominated convergence theorem The Next CEO of Stack OverflowIs...
Why the difference in type-inference over the as-pattern in two similar function definitions?
Is wanting to ask what to write an indication that you need to change your story?
How to count occurrences of text in a file?
Is a distribution that is normal, but highly skewed considered Gaussian?
If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?
Chain wire methods together in Lightning Web Components
Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?
How did people program for Consoles with multiple CPUs?
The past simple of "gaslight" – "gaslighted" or "gaslit"?
Math-accent symbol over parentheses enclosing accented symbol (amsmath)
Writing differences on a blackboard
Is it my responsibility to learn a new technology in my own time my employer wants to implement?
What was the first Unix version to run on a microcomputer?
I want to delete every two lines after 3rd lines in file contain very large number of lines :
Is it professional to write unrelated content in an almost-empty email?
Why do remote US companies require working in the US?
Are police here, aren't itthey?
Proper way to express "He disappeared them"
Find non-case sensitive string in a mixed list of elements?
Flying from Cape Town to England and return to another province
Running a General Election and the European Elections together
Why doesn't UK go for the same deal Japan has with EU to resolve Brexit?
How to edit “Name” property in GCI output?
Can MTA send mail via a relay without being told so?
A small doubt about the dominated convergence theorem
The Next CEO of Stack OverflowIs Lebesgue's Dominated Convergence Theorem a logical equivalence?Lebesgue's Dominated Convergence Theorem questionsExample about Dominated Convergence TheoremDominated Convergence TheoremNecessity of generalization of Dominated Convergence theoremSeeking counterexample for Dominated Convergence theoremHypothesis of dominated convergence theoremDominated convergence theorem vs continuityBartle's proof of Lebesgue Dominated Convergence TheoremTheorem similar to dominated convergence theorem
$begingroup$
Theorem $mathbf{A.2.11}$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$
I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?
measure-theory convergence lebesgue-integral
$endgroup$
add a comment |
$begingroup$
Theorem $mathbf{A.2.11}$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$
I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?
measure-theory convergence lebesgue-integral
$endgroup$
add a comment |
$begingroup$
Theorem $mathbf{A.2.11}$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$
I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?
measure-theory convergence lebesgue-integral
$endgroup$
Theorem $mathbf{A.2.11}$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$
I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?
measure-theory convergence lebesgue-integral
measure-theory convergence lebesgue-integral
edited 48 mins ago
Rócherz
3,0013821
3,0013821
asked 1 hour ago
Ricardo FreireRicardo Freire
579211
579211
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
$$
f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
$$
Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
begin{align*}
lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
end{align*}
Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.
Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
$$
lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
$$
In fact, one has $f_n to f$ strongly in $L^1(E)$.
In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.
$endgroup$
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
30 mins ago
add a comment |
$begingroup$
In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
$$
lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
$$
since in this case, the left-hand side is $1$, but the right-hand side is $0$.
To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.
$endgroup$
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
29 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168945%2fa-small-doubt-about-the-dominated-convergence-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
$$
f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
$$
Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
begin{align*}
lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
end{align*}
Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.
Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
$$
lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
$$
In fact, one has $f_n to f$ strongly in $L^1(E)$.
In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.
$endgroup$
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
30 mins ago
add a comment |
$begingroup$
This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
$$
f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
$$
Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
begin{align*}
lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
end{align*}
Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.
Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
$$
lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
$$
In fact, one has $f_n to f$ strongly in $L^1(E)$.
In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.
$endgroup$
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
30 mins ago
add a comment |
$begingroup$
This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
$$
f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
$$
Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
begin{align*}
lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
end{align*}
Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.
Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
$$
lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
$$
In fact, one has $f_n to f$ strongly in $L^1(E)$.
In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.
$endgroup$
This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
$$
f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
$$
Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
begin{align*}
lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
end{align*}
Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.
Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
$$
lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
$$
In fact, one has $f_n to f$ strongly in $L^1(E)$.
In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.
edited 12 mins ago
answered 43 mins ago
rolandcyprolandcyp
1,856315
1,856315
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
30 mins ago
add a comment |
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
30 mins ago
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
30 mins ago
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
30 mins ago
add a comment |
$begingroup$
In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
$$
lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
$$
since in this case, the left-hand side is $1$, but the right-hand side is $0$.
To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.
$endgroup$
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
29 mins ago
add a comment |
$begingroup$
In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
$$
lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
$$
since in this case, the left-hand side is $1$, but the right-hand side is $0$.
To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.
$endgroup$
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
29 mins ago
add a comment |
$begingroup$
In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
$$
lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
$$
since in this case, the left-hand side is $1$, but the right-hand side is $0$.
To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.
$endgroup$
In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
$$
lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
$$
since in this case, the left-hand side is $1$, but the right-hand side is $0$.
To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.
answered 42 mins ago
Alex OrtizAlex Ortiz
11.2k21441
11.2k21441
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
29 mins ago
add a comment |
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
29 mins ago
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
29 mins ago
$begingroup$
I understood. Thanks a lot for the help
$endgroup$
– Ricardo Freire
29 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168945%2fa-small-doubt-about-the-dominated-convergence-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown