Proving the given two groups are isomorphic The 2019 Stack Overflow Developer Survey Results...
Drawing arrows from one table cell reference to another
Word to describe a time interval
Why not take a picture of a closer black hole?
1960s short story making fun of James Bond-style spy fiction
Does Parliament need to approve the new Brexit delay to 31 October 2019?
How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?
How to read αἱμύλιος or when to aspirate
What force causes entropy to increase?
Single author papers against my advisor's will?
Circular reasoning in L'Hopital's rule
My body leaves; my core can stay
Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?
The following signatures were invalid: EXPKEYSIG 1397BC53640DB551
What can I do if neighbor is blocking my solar panels intentionally?
Match Roman Numerals
What is the role of 'For' here?
What's the point in a preamp?
Can I visit the Trinity College (Cambridge) library and see some of their rare books
Accepted by European university, rejected by all American ones I applied to? Possible reasons?
Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?
Can a flute soloist sit?
What was the last x86 CPU that did not have the x87 floating-point unit built in?
should truth entail possible truth
Is this wall load bearing? Blueprints and photos attached
Proving the given two groups are isomorphic
The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraAre $(mathbb{R},+)$ and $(mathbb{C},+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic
$begingroup$
So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
$endgroup$
add a comment |
$begingroup$
So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
$endgroup$
add a comment |
$begingroup$
So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
$endgroup$
So I am given a group $mathbb R^3$ and a group $H$ = {$(y,0,0)|y in mathbb R$}. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
abstract-algebra group-isomorphism
asked 1 hour ago
UfomammutUfomammut
391314
391314
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
$endgroup$
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
24 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
21 mins ago
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-two-groups-are-isomorphic%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
add a comment |
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
add a comment |
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
answered 32 mins ago
lEmlEm
3,4621921
3,4621921
add a comment |
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
$endgroup$
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
24 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
21 mins ago
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
$endgroup$
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
24 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
21 mins ago
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
$endgroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbb{R}^3 longrightarrow mathbb{R}^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = {(y,0,0) | y in mathbb{R} }$ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). text{Moreover,} f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbb{R}$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbb{R}^3/H equiv mathbb{R}^2.$
edited 6 mins ago
answered 26 mins ago
Mayank MishraMayank Mishra
1068
1068
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
24 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
21 mins ago
add a comment |
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
24 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
21 mins ago
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
24 mins ago
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
24 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
21 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
21 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-two-groups-are-isomorphic%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown