Distributing a matrix The 2019 Stack Overflow Developer Survey Results Are InOn multiplying...

What does ひと匙 mean in this manga and has it been used colloquially?

Why do we hear so much about the Trump administration deciding to impose and then remove tariffs?

Why not take a picture of a closer black hole?

Why can Shazam fly?

Feature engineering suggestion required

Apparent duplicates between Haynes service instructions and MOT

Is a "Democratic" Oligarchy-Style System Possible?

Interpreting the 2019 New York Reproductive Health Act?

Origin of "cooter" meaning "vagina"

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

Reference request: Oldest number theory books with (unsolved) exercises?

slides for 30min~1hr skype tenure track application interview

Why didn't the Event Horizon Telescope team mention Sagittarius A*?

Why is the maximum length of OpenWrt’s root password 8 characters?

Are there incongruent pythagorean triangles with the same perimeter and same area?

How to check whether the reindex working or not in Magento?

Does the shape of a die affect the probability of a number being rolled?

Can we generate random numbers using irrational numbers like π and e?

Did 3000BC Egyptians use meteoric iron weapons?

Did Section 31 appear in Star Trek: The Next Generation?

Is flight data recorder erased after every flight?

Looking for Correct Greek Translation for Heraclitus

The difference between dialogue marks

Is bread bad for ducks?



Distributing a matrix



The 2019 Stack Overflow Developer Survey Results Are InOn multiplying quaternion matricesWhen is matrix multiplication commutative?Matrix multiplicationWhy aren't all matrices diagonalisable?Linear Transformation vs Matrixhow many ways is there to factor matrix?Can an arbitrary matrix represent any linear map just by changing the basis?Inverse matrix confusionA question matrix multiplication commutative?Joint Matrices Factorization












3












$begingroup$


Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



In particular, if I want to distribute



$$((I - A) + A)(I - A)^{-1},$$



would it become



$$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$



OR would it be



$$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$



How do I know which side it goes on? I think the first one is correct.










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



    In particular, if I want to distribute



    $$((I - A) + A)(I - A)^{-1},$$



    would it become



    $$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$



    OR would it be



    $$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$



    How do I know which side it goes on? I think the first one is correct.










    share|cite|improve this question









    $endgroup$















      3












      3








      3





      $begingroup$


      Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



      In particular, if I want to distribute



      $$((I - A) + A)(I - A)^{-1},$$



      would it become



      $$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$



      OR would it be



      $$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$



      How do I know which side it goes on? I think the first one is correct.










      share|cite|improve this question









      $endgroup$




      Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



      In particular, if I want to distribute



      $$((I - A) + A)(I - A)^{-1},$$



      would it become



      $$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$



      OR would it be



      $$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$



      How do I know which side it goes on? I think the first one is correct.







      linear-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      redblacktreesredblacktrees

      424




      424






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Your first answer is correct. There are two distributive laws for matrices,
          $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
          but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





            Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



            $$a cdot (b+c) = acdot b + a cdot c$$



            Similarly, right-distributivity is given by



            $$(b+c)cdot a = bcdot a + ccdot a$$



            Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



            In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





            So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



            $$(B+C)A = BA + CA$$



            Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






            share|cite|improve this answer









            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Your first answer is correct. There are two distributive laws for matrices,
              $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
              but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Your first answer is correct. There are two distributive laws for matrices,
                $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
                but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Your first answer is correct. There are two distributive laws for matrices,
                  $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
                  but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






                  share|cite|improve this answer









                  $endgroup$



                  Your first answer is correct. There are two distributive laws for matrices,
                  $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
                  but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  DavidDavid

                  69.8k668131




                  69.8k668131























                      1












                      $begingroup$

                      In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





                      Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                      $$a cdot (b+c) = acdot b + a cdot c$$



                      Similarly, right-distributivity is given by



                      $$(b+c)cdot a = bcdot a + ccdot a$$



                      Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                      In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





                      So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                      $$(B+C)A = BA + CA$$



                      Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





                        Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                        $$a cdot (b+c) = acdot b + a cdot c$$



                        Similarly, right-distributivity is given by



                        $$(b+c)cdot a = bcdot a + ccdot a$$



                        Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                        In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





                        So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                        $$(B+C)A = BA + CA$$



                        Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





                          Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                          $$a cdot (b+c) = acdot b + a cdot c$$



                          Similarly, right-distributivity is given by



                          $$(b+c)cdot a = bcdot a + ccdot a$$



                          Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                          In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





                          So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                          $$(B+C)A = BA + CA$$



                          Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






                          share|cite|improve this answer









                          $endgroup$



                          In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





                          Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                          $$a cdot (b+c) = acdot b + a cdot c$$



                          Similarly, right-distributivity is given by



                          $$(b+c)cdot a = bcdot a + ccdot a$$



                          Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                          In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





                          So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                          $$(B+C)A = BA + CA$$



                          Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 3 hours ago









                          Eevee TrainerEevee Trainer

                          10.4k31742




                          10.4k31742






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Paper upload error, “Upload failed: The top margin is 0.715 in on page 3, which is below the required...

                              Emraan Hashmi Filmografia | Linki zewnętrzne | Menu nawigacyjneGulshan GroverGulshan...

                              How can I write this formula?newline and italics added with leqWhy does widehat behave differently if I...