Can divisibility rules for digits be generalized to sum of digitsDivisibility by 7 rule, and Congruence...
Modeling an IPv4 Address
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Can I ask the recruiters in my resume to put the reason why I am rejected?
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
Example of a continuous function that don't have a continuous extension
Why not use SQL instead of GraphQL?
In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?
Can divisibility rules for digits be generalized to sum of digits
Why doesn't H₄O²⁺ exist?
What is the offset in a seaplane's hull?
How much RAM could one put in a typical 80386 setup?
Risk of getting Chronic Wasting Disease (CWD) in the United States?
TGV timetables / schedules?
LaTeX closing $ signs makes cursor jump
Writing rule which states that two causes for the same superpower is bad writing
How to write a macro that is braces sensitive?
What's the point of deactivating Num Lock on login screens?
Problem of parity - Can we draw a closed path made up of 20 line segments...
How to test if a transaction is standard without spending real money?
Approximately how much travel time was saved by the opening of the Suez Canal in 1869?
Smoothness of finite-dimensional functional calculus
What are the differences between the usage of 'it' and 'they'?
Animated Series: Alien black spider robot crashes on Earth
Which models of the Boeing 737 are still in production?
Can divisibility rules for digits be generalized to sum of digits
Divisibility by 7 rule, and Congruence Arithmetic LawsWhy is $9$ special in testing divisiblity by $9$ by summing decimal digits? (casting out nines)Divisibility criteria for $7,11,13,17,19$Divisibility Rules for Bases other than $10$divisibility for numbers like 13,17 and 19 - Compartmentalization methodTrying to prove a congruence for Stirling numbers of the second kindThe following is a necessary condition for a number to be prime, from its digit expansion. Has it been referred somewhere?Let N be a four digit number, and N' be N with its digits reversed. Prove that N-N' is divisble by 9. Prove that N+N' is divisble by 11.Digit-sum division check in base-$n$Rules of thumb for divisibilityDivisibility by 7 involving grouping and alternating sumDivisibility of a 7-digit number by 21Divisibility Rule Proof about Special Numbers
$begingroup$
Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_{k=1}^{n}(A+B+C+...)10^{k} equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome
divisibility
$endgroup$
add a comment |
$begingroup$
Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_{k=1}^{n}(A+B+C+...)10^{k} equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome
divisibility
$endgroup$
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
14 hours ago
$begingroup$
Usepmod{11}
to produce $pmod{11}$. Soaequiv bpmod{11}
produces $aequiv bpmod{11}$.
$endgroup$
– Arturo Magidin
14 hours ago
add a comment |
$begingroup$
Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_{k=1}^{n}(A+B+C+...)10^{k} equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome
divisibility
$endgroup$
Suppose that we are given a two digit number $AB$, where $A$ and $B$ represents the digits, i.e 21 would be A=2 , B=1. I wish to prove that the sum of $AB$ and $BA$ is always divisible by $11$.
My initial idée was to use the fact that if a number is divisible by $11$ then the sum of its digits with alternating sign is also divisible by 11. For example
$$1-2+3-3+2-1=0 $$
so $11$ divides $123321$. So my proof would then be to consider the two digit number $(A+B)(B+A)$ or $CC$ which clearly is divisible by $11$ by the above statement if $C$ is $1$ through $9$. However, I am having truble justifying the case were $A+B$ is greater than or equal to $10$ and it got me wondering if the more generel is true: Let $ABCD...$ be a $n-digit$ number, if $$A-B+C-... equiv 0 (mod 11)$$
then $$S=sum_{k=1}^{n}(A+B+C+...)10^{k} equiv0(mod 11)$$
I am not really familliar with the whole congruence thingy, so incase the above is trivial I would be greatful on some source which could aid the solving of the above . Any tips or suggestion are also very welcome
divisibility
divisibility
edited 14 hours ago
André Armatowski
asked 14 hours ago
André ArmatowskiAndré Armatowski
263
263
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
14 hours ago
$begingroup$
Usepmod{11}
to produce $pmod{11}$. Soaequiv bpmod{11}
produces $aequiv bpmod{11}$.
$endgroup$
– Arturo Magidin
14 hours ago
add a comment |
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
14 hours ago
$begingroup$
Usepmod{11}
to produce $pmod{11}$. Soaequiv bpmod{11}
produces $aequiv bpmod{11}$.
$endgroup$
– Arturo Magidin
14 hours ago
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
14 hours ago
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
14 hours ago
$begingroup$
Use
pmod{11}
to produce $pmod{11}$. So aequiv bpmod{11}
produces $aequiv bpmod{11}$.$endgroup$
– Arturo Magidin
14 hours ago
$begingroup$
Use
pmod{11}
to produce $pmod{11}$. So aequiv bpmod{11}
produces $aequiv bpmod{11}$.$endgroup$
– Arturo Magidin
14 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm {bf tilde {rm P}}(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color{#c00}{bequiv -1} Rightarrow {bf tilde {rm P}}(b) = color{#c00}b^n P(1/color{#c00}b) equiv (color{#c00}{-1})^n P(color{#c00}{-1})equiv {-}P(-1),:$$ therefore we conclude that $rm P(b) + {bf tilde {rm P}}(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
$endgroup$
add a comment |
$begingroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline {AB}=10A+B quad &quad overline {BA}=10B+A$$
It follows that $$overline {AB}+overline {BA}=11times (A+B)$$ and we are done.
$endgroup$
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
14 hours ago
add a comment |
$begingroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177167%2fcan-divisibility-rules-for-digits-be-generalized-to-sum-of-digits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm {bf tilde {rm P}}(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color{#c00}{bequiv -1} Rightarrow {bf tilde {rm P}}(b) = color{#c00}b^n P(1/color{#c00}b) equiv (color{#c00}{-1})^n P(color{#c00}{-1})equiv {-}P(-1),:$$ therefore we conclude that $rm P(b) + {bf tilde {rm P}}(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
$endgroup$
add a comment |
$begingroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm {bf tilde {rm P}}(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color{#c00}{bequiv -1} Rightarrow {bf tilde {rm P}}(b) = color{#c00}b^n P(1/color{#c00}b) equiv (color{#c00}{-1})^n P(color{#c00}{-1})equiv {-}P(-1),:$$ therefore we conclude that $rm P(b) + {bf tilde {rm P}}(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
$endgroup$
add a comment |
$begingroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm {bf tilde {rm P}}(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color{#c00}{bequiv -1} Rightarrow {bf tilde {rm P}}(b) = color{#c00}b^n P(1/color{#c00}b) equiv (color{#c00}{-1})^n P(color{#c00}{-1})equiv {-}P(-1),:$$ therefore we conclude that $rm P(b) + {bf tilde {rm P}}(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
$endgroup$
More generally, recall that the radix $rm,b,$ digit string $rm d_n cdots d_1 d_0 $ denotes a polynomial expression $rm P(b) = d_n b^n +:cdots: + d_1 b + d_0,, $ where $rm P(x) = d_n x^n +cdots+ d_1 x + d_0., $ Recall the reversed (digits) polynomial is $rm {bf tilde {rm P}}(x) = x^n P(1/x).,$ If $rm:n:$ is odd the Polynomial Congruence Rule yields $$rm: mod b!+!1: color{#c00}{bequiv -1} Rightarrow {bf tilde {rm P}}(b) = color{#c00}b^n P(1/color{#c00}b) equiv (color{#c00}{-1})^n P(color{#c00}{-1})equiv {-}P(-1),:$$ therefore we conclude that $rm P(b) + {bf tilde {rm P}}(b)equiv P(-1)-P(-1)equiv 0.,$ OP is case $rm,b=10, n=1$.
Remark $ $ Essentially we have twice applied the radix $rm,b,$ analog of casting out elevens (the analog of casting out nines).
edited 10 hours ago
answered 14 hours ago
Bill DubuqueBill Dubuque
213k29196654
213k29196654
add a comment |
add a comment |
$begingroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline {AB}=10A+B quad &quad overline {BA}=10B+A$$
It follows that $$overline {AB}+overline {BA}=11times (A+B)$$ and we are done.
$endgroup$
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
14 hours ago
add a comment |
$begingroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline {AB}=10A+B quad &quad overline {BA}=10B+A$$
It follows that $$overline {AB}+overline {BA}=11times (A+B)$$ and we are done.
$endgroup$
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
14 hours ago
add a comment |
$begingroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline {AB}=10A+B quad &quad overline {BA}=10B+A$$
It follows that $$overline {AB}+overline {BA}=11times (A+B)$$ and we are done.
$endgroup$
It's simpler than you are making it...and no congruences are needed:
We have $$overline {AB}=10A+B quad &quad overline {BA}=10B+A$$
It follows that $$overline {AB}+overline {BA}=11times (A+B)$$ and we are done.
edited 14 hours ago
answered 14 hours ago
lulululu
43.5k25081
43.5k25081
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
14 hours ago
add a comment |
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
14 hours ago
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
14 hours ago
$begingroup$
Very clean, totally escaped me!
$endgroup$
– André Armatowski
14 hours ago
add a comment |
$begingroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
$endgroup$
add a comment |
$begingroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
$endgroup$
add a comment |
$begingroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
$endgroup$
You can easily push through what you were trying though. Say your numbers are $AB$ and $BA$. If $A+Bgt 10$, then write it as $A+B=10+c$; note that $0leq cleq 8$, because two digits cannot add to $19$. That means that when you do the carry, the second digit is $(c+1)$, and so $AB+BA$ will be a three digit number: $1$, then $c+1$, and then $c$. At this point, your test gives you $1-(c+1)+c = 0$, so you get a multiple of $11$.
answered 14 hours ago
Arturo MagidinArturo Magidin
266k34590920
266k34590920
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177167%2fcan-divisibility-rules-for-digits-be-generalized-to-sum-of-digits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/328562/…
$endgroup$
– lab bhattacharjee
14 hours ago
$begingroup$
Use
pmod{11}
to produce $pmod{11}$. Soaequiv bpmod{11}
produces $aequiv bpmod{11}$.$endgroup$
– Arturo Magidin
14 hours ago