Proving by induction of n. Is this correct until this point?prove inequality by induction — Discrete...
Freedom of speech and where it applies
I2C signal and power over long range (10meter cable)
Should a half Jewish man be discouraged from marrying a Jewess?
What is the term when two people sing in harmony, but they aren't singing the same notes?
Is a naturally all "male" species possible?
Is there an wasy way to program in Tikz something like the one in the image?
Why is delta-v is the most useful quantity for planning space travel?
Is there enough fresh water in the world to eradicate the drinking water crisis?
Why are all the doors on Ferenginar (the Ferengi home world) far shorter than the average Ferengi?
Installing PowerShell on 32-bit Kali OS fails
Can a Bard use an arcane focus?
Would it be legal for a US State to ban exports of a natural resource?
Visiting the UK as unmarried couple
Is there a good way to store credentials outside of a password manager?
How to check participants in at events?
Does "Dominei" mean something?
Can I create an upright 7-foot × 5-foot wall with the Minor Illusion spell?
Are taller landing gear bad for aircraft, particulary large airliners?
Teaching indefinite integrals that require special-casing
Word describing multiple paths to the same abstract outcome
Simulating a probability of 1 of 2^N with less than N random bits
Lifted its hind leg on or lifted its hind leg towards?
No idea how to draw this using tikz
What if somebody invests in my application?
Proving by induction of n. Is this correct until this point?
prove inequality by induction — Discrete mathProve $25^n>6^n$ using inductionTrying to simplify an expression for an induction proof.Induction on summation inequality stuck on Induction stepProve by Induction: Summation of Factorial (n! * n)Prove that $n! > n^{3}$ for every integer $n ge 6$ using inductionProving by induction on $n$ that $sum limits_{k=1}^n (k+1)2^{k} = n2^{n+1} $5. Prove by induction on $n$ that $sumlimits_{k=1}^n frac k{k+1} leq n - frac1{n+1}$Prove by induction on n that $sumlimits_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}$Prove by induction on n that $sumlimits_{k=1}^n frac {2^{k}}{k} leq 2^{n}$
$begingroup$
$$
sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
$$
Base Case:
I did $n = 1$, so..
LHS-
$$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$
RHS-
$$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$
so LHS = RHS
Inductive case-
LHS for $n+1$
$$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$
and then I think that you can use inductive hypothesis to change it to the form of
$$
frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
$$
and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into
$$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$
$$=$$
$$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$
$$=$$
$$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then put it back in with the rest of the equation, bringing me to
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then
$$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
and
$$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$
$$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$
which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?
$$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$
canceling out $2^{n}$
$$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$
and I'm stuck, please help!
discrete-mathematics induction
$endgroup$
add a comment |
$begingroup$
$$
sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
$$
Base Case:
I did $n = 1$, so..
LHS-
$$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$
RHS-
$$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$
so LHS = RHS
Inductive case-
LHS for $n+1$
$$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$
and then I think that you can use inductive hypothesis to change it to the form of
$$
frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
$$
and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into
$$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$
$$=$$
$$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$
$$=$$
$$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then put it back in with the rest of the equation, bringing me to
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then
$$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
and
$$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$
$$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$
which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?
$$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$
canceling out $2^{n}$
$$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$
and I'm stuck, please help!
discrete-mathematics induction
$endgroup$
add a comment |
$begingroup$
$$
sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
$$
Base Case:
I did $n = 1$, so..
LHS-
$$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$
RHS-
$$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$
so LHS = RHS
Inductive case-
LHS for $n+1$
$$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$
and then I think that you can use inductive hypothesis to change it to the form of
$$
frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
$$
and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into
$$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$
$$=$$
$$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$
$$=$$
$$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then put it back in with the rest of the equation, bringing me to
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then
$$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
and
$$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$
$$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$
which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?
$$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$
canceling out $2^{n}$
$$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$
and I'm stuck, please help!
discrete-mathematics induction
$endgroup$
$$
sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
$$
Base Case:
I did $n = 1$, so..
LHS-
$$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$
RHS-
$$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$
so LHS = RHS
Inductive case-
LHS for $n+1$
$$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$
and then I think that you can use inductive hypothesis to change it to the form of
$$
frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
$$
and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into
$$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$
$$=$$
$$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$
$$=$$
$$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then put it back in with the rest of the equation, bringing me to
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then
$$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
and
$$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$
$$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$
which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?
$$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$
canceling out $2^{n}$
$$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$
and I'm stuck, please help!
discrete-mathematics induction
discrete-mathematics induction
asked 4 hours ago
BrownieBrownie
1927
1927
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
$endgroup$
add a comment |
$begingroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-is-this-correct-until-this-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
$endgroup$
add a comment |
$begingroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
$endgroup$
add a comment |
$begingroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
$endgroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
answered 4 hours ago
John Wayland BalesJohn Wayland Bales
15.1k21238
15.1k21238
add a comment |
add a comment |
$begingroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
$endgroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
answered 3 hours ago
robjohn♦robjohn
270k27312639
270k27312639
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-is-this-correct-until-this-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown