C++ debug/print custom type with GDB : the case of nlohmann json libraryHow to inspect std::string in GDB...

Added a new user on Ubuntu, set password not working?

Symbol used to indicate indivisibility

2.8 Why are collections grayed out? How can I open them?

It grows, but water kills it

What does chmod -u do?

Creepy dinosaur pc game identification

dpdt switch to spst switch

Drawing ramified coverings with tikz

Closed-form expression for certain product

Reverse int within the 32-bit signed integer range: [−2^31, 2^31 − 1]

What was this official D&D 3.5e Lovecraft-flavored rulebook?

How to explain what's wrong with this application of the chain rule?

How do I color the graph in datavisualization?

What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

Pre-mixing cryogenic fuels and using only one fuel tank

Is it improper etiquette to ask your opponent what his/her rating is before the game?

Not using 's' for he/she/it

Why did the EU agree to delay the Brexit deadline?

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

A social experiment. What is the worst that can happen?

What are the purposes of autoencoders?

Offered money to buy a house, seller is asking for more to cover gap between their listing and mortgage owed

Fear of getting stuck on one programming language / technology that is not used in my country



C++ debug/print custom type with GDB : the case of nlohmann json library


How to inspect std::string in GDB with no source code?How to pass normal param as well as template param in a template function in C++?How do I get my IDE to provide the C++ libraries?Why can I not call reserve on a vector of const elements?Cannot get min_element to work in C++Linker error trying to embed v8LNK2019: unresolved external symbol in C++Valgrind complaining possible memory leak in std string's new operatorName mangling confusion in LLVMclang++ memory sanitizer reports use-of-uninitialized-valueDebug std containers with gdb not working













10















I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = {{"bar", "barz"}};


What I would like to have in GDB:



(gdb) p foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.
}


Current behavior



(gdb) p foo
$1 = {
m_type = nlohmann::detail::value_t::object,
m_value = {
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315
}
}
(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 = {
_M_t = {
_M_impl = {
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {<No data fields>}, <No data fields>},
<std::_Rb_tree_key_compare<std::less<void> >> = {
_M_key_compare = {<No data fields>}
},
<std::_Rb_tree_header> = {
_M_header = {
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
},
_M_node_count = 5
}, <No data fields>}
}
}









share|improve this question

























  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    41 mins ago
















10















I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = {{"bar", "barz"}};


What I would like to have in GDB:



(gdb) p foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.
}


Current behavior



(gdb) p foo
$1 = {
m_type = nlohmann::detail::value_t::object,
m_value = {
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315
}
}
(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 = {
_M_t = {
_M_impl = {
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {<No data fields>}, <No data fields>},
<std::_Rb_tree_key_compare<std::less<void> >> = {
_M_key_compare = {<No data fields>}
},
<std::_Rb_tree_header> = {
_M_header = {
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
},
_M_node_count = 5
}, <No data fields>}
}
}









share|improve this question

























  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    41 mins ago














10












10








10








I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = {{"bar", "barz"}};


What I would like to have in GDB:



(gdb) p foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.
}


Current behavior



(gdb) p foo
$1 = {
m_type = nlohmann::detail::value_t::object,
m_value = {
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315
}
}
(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 = {
_M_t = {
_M_impl = {
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {<No data fields>}, <No data fields>},
<std::_Rb_tree_key_compare<std::less<void> >> = {
_M_key_compare = {<No data fields>}
},
<std::_Rb_tree_header> = {
_M_header = {
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
},
_M_node_count = 5
}, <No data fields>}
}
}









share|improve this question
















I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = {{"bar", "barz"}};


What I would like to have in GDB:



(gdb) p foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.
}


Current behavior



(gdb) p foo
$1 = {
m_type = nlohmann::detail::value_t::object,
m_value = {
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315
}
}
(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 = {
_M_t = {
_M_impl = {
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {<No data fields>}, <No data fields>},
<std::_Rb_tree_key_compare<std::less<void> >> = {
_M_key_compare = {<No data fields>}
},
<std::_Rb_tree_header> = {
_M_header = {
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
},
_M_node_count = 5
}, <No data fields>}
}
}






c++ json gdb pretty-print nlohmann-json






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 1 hour ago







LoneWanderer

















asked 7 hours ago









LoneWandererLoneWanderer

1,122825




1,122825













  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    41 mins ago



















  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    41 mins ago

















You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

– Retired Ninja
41 mins ago





You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

– Retired Ninja
41 mins ago












1 Answer
1






active

oldest

votes


















14














I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer


























  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago













Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55316620%2fc-debug-print-custom-type-with-gdb-the-case-of-nlohmann-json-library%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









14














I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer


























  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago


















14














I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer


























  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago
















14












14








14







I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer















I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None






share|improve this answer














share|improve this answer



share|improve this answer








edited 59 mins ago

























answered 7 hours ago









LoneWandererLoneWanderer

1,122825




1,122825













  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago





















  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago



















That looks pretty useful. Unfortunately I am out of votes ATM.

– πάντα ῥεῖ
6 hours ago







That looks pretty useful. Unfortunately I am out of votes ATM.

– πάντα ῥεῖ
6 hours ago






















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55316620%2fc-debug-print-custom-type-with-gdb-the-case-of-nlohmann-json-library%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can't compile dgruyter and caption packagesLaTeX templates/packages for writing a patent specificationLatex...

Schneeberg (Smreczany) Bibliografia | Menu...

Hans Bellmer Spis treści Życiorys | Upamiętnienie | Przypisy | Bibliografia | Linki zewnętrzne |...