An inequality of matrix normIs there a condition for the following consequence?Orthogonal Inner Product...
Python if-else code style for reduced code for rounding floats
Co-worker team leader wants to inject his friend's awful software into our development. What should I say to our common boss?
What options are left, if Britain cannot decide?
Sailing the cryptic seas
How can you use ICE tables to solve multiple coupled equilibria?
How to make healing in an exploration game interesting
What exactly is this small puffer fish doing and how did it manage to accomplish such a feat?
How to deal with taxi scam when on vacation?
How to change two letters closest to a string and one letter immediately after a string using notepad++
Are there verbs that are neither telic, or atelic?
Is it possible to upcast ritual spells?
how to draw discrete time diagram in tikz
AG Cluster db upgrade by vendor
Why do passenger jet manufacturers design their planes with stall prevention systems?
How to explain that I do not want to visit a country due to personal safety concern?
How to create the Curved texte?
Use void Apex method in Lightning Web Component
Do I need life insurance if I can cover my own funeral costs?
An inequality of matrix norm
Employee lack of ownership
How do I hide Chekhov's Gun?
Is there a data structure that only stores hash codes and not the actual objects?
A link redirect to http instead of https: how critical is it?
What are substitutions for coconut in curry?
An inequality of matrix norm
Is there a condition for the following consequence?Orthogonal Inner Product Proofprove change of basis matrix is unitarya matrix metricMatrix of non-degenerate product invertible?Prove that there is a $uin V$, such that $<u,v_i>$ is greater than zero, for every $i in {{1,..,m}}$.Inner product of dual basisColumn Spaces and SubsetsProve matrix inequality in inner product spaceInduced inner product on tensor powers.
$begingroup$
Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
$$|T|:=sup{|Tv|_{W}:|v|_{V}=1}$$ where $|v_{V}|:=sqrt{langle v,vrangle}$ and $|Tv|_{W}:=sqrt{langle Tv,Tvrangle}$.
Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n {times} n$ unitary matrices. Show that
$$|U_1cdots U_k-V_1cdots V_k| leq sum_{i=1}^{k}|U_i-V_i|$$
I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!
linear-algebra matrices functional-analysis norm
$endgroup$
add a comment |
$begingroup$
Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
$$|T|:=sup{|Tv|_{W}:|v|_{V}=1}$$ where $|v_{V}|:=sqrt{langle v,vrangle}$ and $|Tv|_{W}:=sqrt{langle Tv,Tvrangle}$.
Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n {times} n$ unitary matrices. Show that
$$|U_1cdots U_k-V_1cdots V_k| leq sum_{i=1}^{k}|U_i-V_i|$$
I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!
linear-algebra matrices functional-analysis norm
$endgroup$
add a comment |
$begingroup$
Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
$$|T|:=sup{|Tv|_{W}:|v|_{V}=1}$$ where $|v_{V}|:=sqrt{langle v,vrangle}$ and $|Tv|_{W}:=sqrt{langle Tv,Tvrangle}$.
Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n {times} n$ unitary matrices. Show that
$$|U_1cdots U_k-V_1cdots V_k| leq sum_{i=1}^{k}|U_i-V_i|$$
I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!
linear-algebra matrices functional-analysis norm
$endgroup$
Let $V,W$ be complex inner product spaces. Suppose $T: V to W$ is a linear map, then we define
$$|T|:=sup{|Tv|_{W}:|v|_{V}=1}$$ where $|v_{V}|:=sqrt{langle v,vrangle}$ and $|Tv|_{W}:=sqrt{langle Tv,Tvrangle}$.
Question: Suppose $U_1,ldots,U_k$ and $V_1,ldots,V_k$ are $n {times} n$ unitary matrices. Show that
$$|U_1cdots U_k-V_1cdots V_k| leq sum_{i=1}^{k}|U_i-V_i|$$
I have tried to use triangle inequality for norms and induction but failed. Can anyone give some hints? Thank you!
linear-algebra matrices functional-analysis norm
linear-algebra matrices functional-analysis norm
edited 1 hour ago
Bernard
123k741116
123k741116
asked 1 hour ago
bbwbbw
51739
51739
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
$$
begin{array}{ll}
& ||U_1 U_2 - V_1 V_2||\ \
= & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
= &
|| ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
end{array}
$$
(The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
$$
|| ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
$$
A similar bound obtains for $||V_1 (U_2 - V_2) ||$.
This should give you enough "building blocks".:)
$endgroup$
$begingroup$
Thank you so much!
$endgroup$
– bbw
1 hour ago
1
$begingroup$
You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
$endgroup$
– avs
52 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149889%2fan-inequality-of-matrix-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
$$
begin{array}{ll}
& ||U_1 U_2 - V_1 V_2||\ \
= & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
= &
|| ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
end{array}
$$
(The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
$$
|| ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
$$
A similar bound obtains for $||V_1 (U_2 - V_2) ||$.
This should give you enough "building blocks".:)
$endgroup$
$begingroup$
Thank you so much!
$endgroup$
– bbw
1 hour ago
1
$begingroup$
You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
$endgroup$
– avs
52 mins ago
add a comment |
$begingroup$
For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
$$
begin{array}{ll}
& ||U_1 U_2 - V_1 V_2||\ \
= & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
= &
|| ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
end{array}
$$
(The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
$$
|| ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
$$
A similar bound obtains for $||V_1 (U_2 - V_2) ||$.
This should give you enough "building blocks".:)
$endgroup$
$begingroup$
Thank you so much!
$endgroup$
– bbw
1 hour ago
1
$begingroup$
You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
$endgroup$
– avs
52 mins ago
add a comment |
$begingroup$
For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
$$
begin{array}{ll}
& ||U_1 U_2 - V_1 V_2||\ \
= & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
= &
|| ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
end{array}
$$
(The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
$$
|| ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
$$
A similar bound obtains for $||V_1 (U_2 - V_2) ||$.
This should give you enough "building blocks".:)
$endgroup$
For $k = 1$, the inequality becomes an identity. So, start with the special case $k = 2$:
$$
begin{array}{ll}
& ||U_1 U_2 - V_1 V_2||\ \
= & ||U_1 U_2 - V_1 U_2 + V_1 U_2 - V_1 V_2||\ \
= &
|| ( U_1 - V_1) U_2 + V_1 (U_2 - V_2) || \ \
leq & ||( U_1 - V_1) U_2 || + ||V_1 (U_2 - V_2) ||.\
end{array}
$$
(The last inequality is the triangle inequality.) Now, since $U_2$ is unitary, we have $||U_{2}|| = 1$, so
$$
|| ( U_1 - V_1) U_2 || leq || U_1 - V_1 ||.
$$
A similar bound obtains for $||V_1 (U_2 - V_2) ||$.
This should give you enough "building blocks".:)
edited 52 mins ago
answered 1 hour ago
avsavs
3,424513
3,424513
$begingroup$
Thank you so much!
$endgroup$
– bbw
1 hour ago
1
$begingroup$
You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
$endgroup$
– avs
52 mins ago
add a comment |
$begingroup$
Thank you so much!
$endgroup$
– bbw
1 hour ago
1
$begingroup$
You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
$endgroup$
– avs
52 mins ago
$begingroup$
Thank you so much!
$endgroup$
– bbw
1 hour ago
$begingroup$
Thank you so much!
$endgroup$
– bbw
1 hour ago
1
1
$begingroup$
You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
$endgroup$
– avs
52 mins ago
$begingroup$
You are welcome. I edited to remove the (unjustified) assumption that the matrices commute.:)
$endgroup$
– avs
52 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149889%2fan-inequality-of-matrix-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown