First Component in PCA Announcing the arrival of Valued Associate #679: Cesar Manara ...

Pointing to problems without suggesting solutions

Table formatting with tabularx?

New Order #6: Easter Egg

Understanding piped commands in GNU/Linux

How does the body cool itself in a stillsuit?

How can I list files in reverse time order by a command and pass them as arguments to another command?

How to make an animal which can only breed for a certain number of generations?

Random body shuffle every night—can we still function?

Weaponising the Grasp-at-a-Distance spell

How to get a flat-head nail out of a piece of wood?

Marquee sign letters

First paper to introduce the "principal-agent problem"

Where and when has Thucydides been studied?

malloc in main() or malloc in another function: allocating memory for a struct and its members

How to name indistinguishable henchmen in a screenplay?

What does Sonny Burch mean by, "S.H.I.E.L.D. and HYDRA don't even exist anymore"?

Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?

What is a more techy Technical Writer job title that isn't cutesy or confusing?

Why do C and C++ allow the expression (int) + 4*5?

3D Masyu - A Die

Should man-made satellites feature an intelligent inverted "cow catcher"?

Where did Ptolemy compare the Earth to the distance of fixed stars?

What did Turing mean when saying that "machines cannot give rise to surprises" is due to a fallacy?

Fit odd number of triplets in a measure?



First Component in PCA



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)What do the first $k$ factors from factor analysis maximize?First principal component of 2D data forming a rectangle?Line that separates data partitioned by the first principal component of PCAWhy is linear regression different from PCA?Does the first principal component differ from simply computing the mean of all variables?Citation for total amount of variance explained in PCAQuiz: Determine first principal component from data-plotsIn PCA, is there an intuitive explanation for why the second principal component chosen must be orthogonal to the first component?PCA: How can the first principal component both maximize variance AND define the line that most closely fits the data?Principal component weights flipped after PCA





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







1












$begingroup$


I was doing the Andrew Ng's ML course, and one of the solutions mentioned The first principal component is aligned with the direction of maximal variance.



I didn't get what it is trying to say.










share|cite|improve this question







New contributor




user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



















    1












    $begingroup$


    I was doing the Andrew Ng's ML course, and one of the solutions mentioned The first principal component is aligned with the direction of maximal variance.



    I didn't get what it is trying to say.










    share|cite|improve this question







    New contributor




    user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      1












      1








      1





      $begingroup$


      I was doing the Andrew Ng's ML course, and one of the solutions mentioned The first principal component is aligned with the direction of maximal variance.



      I didn't get what it is trying to say.










      share|cite|improve this question







      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I was doing the Andrew Ng's ML course, and one of the solutions mentioned The first principal component is aligned with the direction of maximal variance.



      I didn't get what it is trying to say.







      machine-learning pca






      share|cite|improve this question







      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 6 hours ago









      user3656142user3656142

      61




      61




      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Welcome to CV!



          PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.





          Consider this mock example:



          There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



          PCA






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "65"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            user3656142 is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404334%2ffirst-component-in-pca%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Welcome to CV!



            PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.





            Consider this mock example:



            There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



            PCA






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Welcome to CV!



              PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.





              Consider this mock example:



              There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



              PCA






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Welcome to CV!



                PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.





                Consider this mock example:



                There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



                PCA






                share|cite|improve this answer









                $endgroup$



                Welcome to CV!



                PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.





                Consider this mock example:



                There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



                PCA







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 4 hours ago









                Frans RodenburgFrans Rodenburg

                3,6791529




                3,6791529






















                    user3656142 is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    user3656142 is a new contributor. Be nice, and check out our Code of Conduct.













                    user3656142 is a new contributor. Be nice, and check out our Code of Conduct.












                    user3656142 is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404334%2ffirst-component-in-pca%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can't compile dgruyter and caption packagesLaTeX templates/packages for writing a patent specificationLatex...

                    Schneeberg (Smreczany) Bibliografia | Menu...

                    Hans Bellmer Spis treści Życiorys | Upamiętnienie | Przypisy | Bibliografia | Linki zewnętrzne |...