Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about...

How to feed LSTM with different input array sizes?

Can a German sentence have two subjects?

Do VLANs within a subnet need to have their own subnet for router on a stick?

How to add power-LED to my small amplifier?

Why are weather verbs 曇る and 晴れる treated differently in this sentence?

Japan - Plan around max visa duration

Why linear maps act like matrix multiplication?

Is the month field really deprecated?

The magic money tree problem

Basic combinations logic doubt in probability

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

Is the language {<p,n> | p and n are natural numbers and there's no prime number in [p,p+n]} belongs to NP class?

What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)

How old can references or sources in a thesis be?

Theorems that impeded progress

TGV timetables / schedules?

Is it possible to make sharp wind that can cut stuff from afar?

Modeling an IPv4 Address

Why has Russell's definition of numbers using equivalence classes been finally abandonned? ( If it has actually been abandonned).

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Is there really no realistic way for a skeleton monster to move around without magic?

Can a Warlock become Neutral Good?

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)



Prove that NP is closed under karp reduction?


Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbf{NC_2}$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?













3












$begingroup$


A complexity class $mathbb{C}$ is said to be closed under a reduction if:



$A$ reduces to $B$ and $B in mathbb{C}$ $implies$ $A in mathbb{C}$



How would you go about proving this if $mathbb{C} = NP$ and the reduction to be the karp reduction? i.e.



Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$










share|cite|improve this question







New contributor




Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 3




    $begingroup$
    Try using the definitions.
    $endgroup$
    – Yuval Filmus
    21 hours ago










  • $begingroup$
    @YuvalFilmus thanks for the advice, this helped me figure it out!
    $endgroup$
    – Ankit Bahl
    20 hours ago
















3












$begingroup$


A complexity class $mathbb{C}$ is said to be closed under a reduction if:



$A$ reduces to $B$ and $B in mathbb{C}$ $implies$ $A in mathbb{C}$



How would you go about proving this if $mathbb{C} = NP$ and the reduction to be the karp reduction? i.e.



Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$










share|cite|improve this question







New contributor




Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 3




    $begingroup$
    Try using the definitions.
    $endgroup$
    – Yuval Filmus
    21 hours ago










  • $begingroup$
    @YuvalFilmus thanks for the advice, this helped me figure it out!
    $endgroup$
    – Ankit Bahl
    20 hours ago














3












3








3





$begingroup$


A complexity class $mathbb{C}$ is said to be closed under a reduction if:



$A$ reduces to $B$ and $B in mathbb{C}$ $implies$ $A in mathbb{C}$



How would you go about proving this if $mathbb{C} = NP$ and the reduction to be the karp reduction? i.e.



Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$










share|cite|improve this question







New contributor




Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




A complexity class $mathbb{C}$ is said to be closed under a reduction if:



$A$ reduces to $B$ and $B in mathbb{C}$ $implies$ $A in mathbb{C}$



How would you go about proving this if $mathbb{C} = NP$ and the reduction to be the karp reduction? i.e.



Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$







complexity-theory






share|cite|improve this question







New contributor




Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 21 hours ago









Ankit BahlAnkit Bahl

663




663




New contributor




Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 3




    $begingroup$
    Try using the definitions.
    $endgroup$
    – Yuval Filmus
    21 hours ago










  • $begingroup$
    @YuvalFilmus thanks for the advice, this helped me figure it out!
    $endgroup$
    – Ankit Bahl
    20 hours ago














  • 3




    $begingroup$
    Try using the definitions.
    $endgroup$
    – Yuval Filmus
    21 hours ago










  • $begingroup$
    @YuvalFilmus thanks for the advice, this helped me figure it out!
    $endgroup$
    – Ankit Bahl
    20 hours ago








3




3




$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
21 hours ago




$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
21 hours ago












$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
20 hours ago




$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
20 hours ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

I was able to figure it out. In case anyone was wondering:



$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where i is the input to $B$.



$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and vice versa),



Therefore, an algorithm for $A$ can be made as follows:



$A (i)$




  1. Take input $i$ and apply $m$ to yield $m(i)$

  2. Apply $b$ with input $m(i)$


This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.






share|cite|improve this answer








New contributor




Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "419"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    I was able to figure it out. In case anyone was wondering:



    $B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where i is the input to $B$.



    $A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and vice versa),



    Therefore, an algorithm for $A$ can be made as follows:



    $A (i)$




    1. Take input $i$ and apply $m$ to yield $m(i)$

    2. Apply $b$ with input $m(i)$


    This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.






    share|cite|improve this answer








    New contributor




    Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$


















      5












      $begingroup$

      I was able to figure it out. In case anyone was wondering:



      $B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where i is the input to $B$.



      $A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and vice versa),



      Therefore, an algorithm for $A$ can be made as follows:



      $A (i)$




      1. Take input $i$ and apply $m$ to yield $m(i)$

      2. Apply $b$ with input $m(i)$


      This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.






      share|cite|improve this answer








      New contributor




      Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$
















        5












        5








        5





        $begingroup$

        I was able to figure it out. In case anyone was wondering:



        $B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where i is the input to $B$.



        $A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and vice versa),



        Therefore, an algorithm for $A$ can be made as follows:



        $A (i)$




        1. Take input $i$ and apply $m$ to yield $m(i)$

        2. Apply $b$ with input $m(i)$


        This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.






        share|cite|improve this answer








        New contributor




        Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$



        I was able to figure it out. In case anyone was wondering:



        $B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where i is the input to $B$.



        $A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and vice versa),



        Therefore, an algorithm for $A$ can be made as follows:



        $A (i)$




        1. Take input $i$ and apply $m$ to yield $m(i)$

        2. Apply $b$ with input $m(i)$


        This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.







        share|cite|improve this answer








        New contributor




        Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        share|cite|improve this answer



        share|cite|improve this answer






        New contributor




        Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        answered 20 hours ago









        Ankit BahlAnkit Bahl

        663




        663




        New contributor




        Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.





        New contributor





        Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        Ankit Bahl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






















            Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.













            Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.












            Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Computer Science Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can't compile dgruyter and caption packagesLaTeX templates/packages for writing a patent specificationLatex...

            Schneeberg (Smreczany) Bibliografia | Menu...

            Hans Bellmer Spis treści Życiorys | Upamiętnienie | Przypisy | Bibliografia | Linki zewnętrzne |...